AN INFRARED DIFFUSE CIRCUMSTELLAR BAND? THE UNUSUAL 1.5272 μ m DIB IN THE RED SQUARE NEBULA

The molecular carriers of the ubiquitous absorption features called the diffuse interstellar bands (DIBs) have eluded identification for many decades, in part because of the enormous parameter space spanned by the candidates and the limited set of empirical constraints afforded by observations in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2015-10, Vol.811 (2), p.119
Hauptverfasser: Zasowski, G., Chojnowski, S. Drew, Whelan, D. G., Miroshnichenko, A. S., García-Hernández, D. A., Majewski, S. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The molecular carriers of the ubiquitous absorption features called the diffuse interstellar bands (DIBs) have eluded identification for many decades, in part because of the enormous parameter space spanned by the candidates and the limited set of empirical constraints afforded by observations in the diffuse interstellar medium. Detection of these features in circumstellar regions, where the environmental properties are more easily measured, is thus a promising approach to understanding the chemical nature of the carriers themselves. Here, using high-resolution spectra from the Apache Point Observatory Galactic Evolution Experiment survey, we present an analysis of the unusually asymmetric 1.5272 μm DIB feature along the sightline to the Red Square Nebula (RSN) and demonstrate the likely circumstellar origin of about half of the DIB absorption in this line of sight. This interpretation is supported both by the velocities of the feature components and by the ratio of foreground to total reddening along the line of sight. The RSN sightline offers the unique opportunity to study the behavior of DIB carriers in a constrained environment and thus to shed new light on the carriers themselves.
ISSN:1538-4357
0004-637X
1538-4357
DOI:10.1088/0004-637X/811/2/119