Electron attachment and positive ion chemistry of monohydrogenated fluorocarbon radicals
Rate coefficients and product branching fractions for electron attachment and for reaction with Ar(+) are measured over the temperature range 300-585 K for three monohydrogenated fluorocarbon (HFC) radicals (CF3CHF, CHF2CF2, and CF3CHFCF2), as well as their five closed-shell precursors (1-HC2F4I, 2-...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2015-08, Vol.143 (7), p.074309-074309 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rate coefficients and product branching fractions for electron attachment and for reaction with Ar(+) are measured over the temperature range 300-585 K for three monohydrogenated fluorocarbon (HFC) radicals (CF3CHF, CHF2CF2, and CF3CHFCF2), as well as their five closed-shell precursors (1-HC2F4I, 2-HC2F4I, 2-HC2F4Br, 1-HC3F6I, 2-HC3F6Br). Attachment to the HFC radicals is always fairly inefficient (between 0.1% and 10% of the Vogt-Wannier capture rate), but generally faster than attachment to analogous perfluorinated carbon radicals. The primary products in all cases are HF-loss to yield C(n)F(m-1)(-) anions, with only a minor branching to F(-) product. In all cases the temperature dependences are weak. Attachment to the precursor halocarbons is near the capture rate with a slight negative temperature dependence in all cases except for 2-HC2F4Br, which is ∼10% efficient at 300 K and becomes more efficient, approaching the capture rate at higher temperatures. All attachment kinetics are successfully reproduced using a kinetic modeling approach. Reaction of the HFC radicals with Ar(+) proceeds at or near the calculated collisional rate coefficient in all cases, yielding a wide variety of product ions. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4928691 |