Role of structural defects in the ultraviolet luminescence of multiwall boron nitride nanotubes

BN nanotubes (BNNTs) are structurally similar to their carbon counterparts, though much less investigated. New synthesis methods have been recently reported, enabling the production of industrial quantities and stimulating the search of new applications for the BNNTs. In this paper, we investigate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2015-12, Vol.118 (23)
Hauptverfasser: Pierret, Aurélie, Nong, Hanond, Fossard, Frédéric, Attal-Trétout, Brigitte, Xue, Yanming, Golberg, Dmitri, Barjon, Julien, Loiseau, Annick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BN nanotubes (BNNTs) are structurally similar to their carbon counterparts, though much less investigated. New synthesis methods have been recently reported, enabling the production of industrial quantities and stimulating the search of new applications for the BNNTs. In this paper, we investigate the luminescence of multiwall BNNTs. By performing cathodoluminescence experiments on single tubes at 10 K, we show that the tube luminescence is highly heterogeneous (i) from tube to tube and (ii) spatially along a single tube. By combining cathodoluminescence measurements with a nanometer excitation and transmission electron microscopy on the same tube, we correlate luminescence and structural features. We conclude that the near-band-edge luminescence of BNNTs (≈5.4 eV) is related to the presence of extended structural defects, such as dislocations or ruptures in the wall stacking.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4937990