Fermi level pinning at the Ge(001) surface—A case for non-standard explanation
To explore the origin of the Fermi level pinning in germanium, we investigate the Ge(001) and Ge(001):H surfaces. The absence of relevant surface states in the case of Ge(001):H should unpin the surface Fermi level. This is not observed. For samples with donors as majority dopants, the surface Fermi...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2015-11, Vol.118 (18) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To explore the origin of the Fermi level pinning in germanium, we investigate the Ge(001) and Ge(001):H surfaces. The absence of relevant surface states in the case of Ge(001):H should unpin the surface Fermi level. This is not observed. For samples with donors as majority dopants, the surface Fermi level appears close to the top of the valence band regardless of the surface structure. Surprisingly, for the passivated surface, it is located below the top of the valence band allowing scanning tunneling microscopy imaging within the band gap. We argue that the well known electronic mechanism behind band bending does not apply and a more complicated scenario involving ionic degrees of freedom is therefore necessary. Experimental techniques involve four point probe electric current measurements, scanning tunneling microscopy, and spectroscopy. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4935540 |