Electro-physical characterization of individual and arrays of ZnO nanowires
Capacitance measurements were made on an array of parallel ZnO nanowires embedded in a polymer matrix and provided with two electrodes perpendicular to the nanowires. The capacitance monotonically increased, and saturated at large negative (depleting) and large positive (accumulating) voltages. A qu...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2015-07, Vol.118 (3) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Capacitance measurements were made on an array of parallel ZnO nanowires embedded in a polymer matrix and provided with two electrodes perpendicular to the nanowires. The capacitance monotonically increased, and saturated at large negative (depleting) and large positive (accumulating) voltages. A qualitative explanation for this behavior is presented, taking into account specific features of quasi-one-dimensional screening. The increasing or decreasing character of the capacitance-voltage characteristics were determined by the conductivity type of the nanowires, which in our case was n-type. A dispersion of the experimental capacitance was observed over the entire frequency range of 1 kHz to 5 MHz. This phenomenon is explained by the slow discharge of the nanowires through the thin dielectric layer that separates them from the top electrode. Separate measurements on individual identical nanowires in a field effect transistor configuration yielded an electron concentration and mobility of approximately 1017 cm−3 and 150 cm2/Vs, respectively, at room temperature. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4926793 |