Study on synthesis and electrochemical properties of hematite nanotubes for energy storage in supercapacitor
Hematite nanotubes (α-Fe2O3 NTs) are synthesized via a cost-effective and environmental-friendly hydrothermal technique. Field emission scanning electron microscopy and X-ray powder diffraction analyses reveal the formation of α-Fe2O3 NTs with high crystallinity and purity. Optical behavior of α-Fe2...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hematite nanotubes (α-Fe2O3 NTs) are synthesized via a cost-effective and environmental-friendly hydrothermal technique. Field emission scanning electron microscopy and X-ray powder diffraction analyses reveal the formation of α-Fe2O3 NTs with high crystallinity and purity. Optical behavior of α-Fe2O3 NTs is studied employing UV-visible spectroscopy. Electrochemical properties of the as-prepared electrode material are investigated by cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy in a three electrode cell. The synthesized α-Fe2O3 NTs present enhanced pseudocapacitive performance with high specific capacity of 230 Fg−1 at current density of 1 Ag−1. The prepared α-Fe2O3 NTs can be utilized as a potential electrode material for electrochemical capacitor applications. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4917727 |