Atomic layer deposition of molybdenum oxide from (N{sup t}Bu){sub 2}(NMe{sub 2}){sub 2}Mo and O{sub 2} plasma

Molybdenum oxide (MoO{sub x}) films have been deposited by atomic layer deposition using bis(tert-butylimido)-bis(dimethylamido)molybdenum and oxygen plasma, within a temperature range of 50–350 °C. Amorphous film growth was observed between 50 and 200 °C at a growth per cycle (GPC) around 0.80 Å. F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2016-01, Vol.34 (1)
Hauptverfasser: Vos, Martijn F. J., Macco, Bart, Thissen, Nick F. W., Bol, Ageeth A., Kessels, W. M. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molybdenum oxide (MoO{sub x}) films have been deposited by atomic layer deposition using bis(tert-butylimido)-bis(dimethylamido)molybdenum and oxygen plasma, within a temperature range of 50–350 °C. Amorphous film growth was observed between 50 and 200 °C at a growth per cycle (GPC) around 0.80 Å. For deposition temperatures of 250 °C and higher, a transition to polycrystalline growth was observed, accompanied by an increase in GPC up to 1.88 Å. For all deposition temperatures the O/Mo ratio was found to be just below three, indicating the films were slightly substoichiometric with respect to MoO{sub 3} and contained oxygen vacancies. The high purity of the films was demonstrated in the absence of detectable C and N contamination in Rutherford backscattering measurements, and a H content varying between 3 and 11 at. % measured with elastic recoil detection. In addition to the chemical composition, the optical properties are reported as well.
ISSN:0734-2101
1520-8559
DOI:10.1116/1.4930161