Low thermal budget n-type doping into Ge(001) surface using ultraviolet laser irradiation in phosphoric acid solution

We have investigated phosphorus (P) doping into Ge(001) surfaces by using ultraviolet laser irradiation in phosphoric acid solution at room temperature. We demonstrated that the diffusion depth of P in Ge and the concentration of electrically activated P can be controlled by the number of laser shot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2016-02, Vol.108 (5)
Hauptverfasser: Takahashi, Kouta, Kurosawa, Masashi, Ikenoue, Hiroshi, Sakashita, Mitsuo, Takeuchi, Wakana, Nakatsuka, Osamu, Zaima, Shigeaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have investigated phosphorus (P) doping into Ge(001) surfaces by using ultraviolet laser irradiation in phosphoric acid solution at room temperature. We demonstrated that the diffusion depth of P in Ge and the concentration of electrically activated P can be controlled by the number of laser shots. Indeed, a high concentration of electrically activated P of 2.4 × 1019 cm−3 was realized by 1000-times laser shots at a laser energy of 1.0 J/cm2, which is comparable or better than the counterparts of conventional n-type doping using a high thermal budget over 600 °C. The generation current is dominant in the reverse bias condition for the laser-doped pn-junction diodes independent on the number of laser shots, thus indicating low-damage during the pn-junction formation. These results open up the possibility for applicable low thermal budget doping process for Ge-based devices fabricated on flexible substrates as well as Si electronics.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4941236