Dynamic atomic layer epitaxy of InN on/in +c-GaN matrix: Effect of “In+N” coverage and capping timing by GaN layer on effective InN thickness

The growth front in the self-organizing and self-limiting epitaxy of ∼1 monolayer (ML)-thick InN wells on/in +c-GaN matrix by molecular beam epitaxy (MBE) has been studied in detail, with special attention given to the behavior and role of the N atoms. The growth temperatures of interest are above 6...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2016-01, Vol.108 (2)
Hauptverfasser: Yoshikawa, Akihiko, Kusakabe, Kazuhide, Hashimoto, Naoki, Hwang, Eun-Sook, Itoi, Takaomi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The growth front in the self-organizing and self-limiting epitaxy of ∼1 monolayer (ML)-thick InN wells on/in +c-GaN matrix by molecular beam epitaxy (MBE) has been studied in detail, with special attention given to the behavior and role of the N atoms. The growth temperatures of interest are above 600 °C, far higher than the typical upper critical temperature of 500 °C in MBE. It was confirmed that 2 ML-thick InN wells can be frozen/inserted in GaN matrix at 620 °C, but it was found that N atoms at the growth front tend to selectively re-evaporate more quickly than In atoms at temperatures higher than 650 °C. As a result, the effective thickness of inserted InN wells in the GaN matrix at 660–670 °C were basically 1 ML or sub-ML, even though they were capped by a GaN barrier at the time of 2 ML “In+N” coverage. Furthermore, it was found that the N atoms located below In atoms in the dynamic atomic layer epitaxy growth front had remarkably weaker bonding to the +c-GaN surface.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4939977