The solubility and site preference of Fe{sup 3+} in Li{sub 7−3x}Fe{sub x}La{sub 3}Zr{sub 2}O{sub 12} garnets
A series of Fe{sup 3+}-bearing Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) garnets was synthesized using solid-state synthesis methods. The synthetic products were characterized compositionally using electron microprobe analysis and inductively coupled plasma optical emission spectroscopy (ICP-OES)...
Gespeichert in:
Veröffentlicht in: | Journal of solid state chemistry 2015-10, Vol.230 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of solid state chemistry |
container_volume | 230 |
creator | Rettenwander, D. Geiger, C.A. Tribus, M. Tropper, P. Wagner, R. Tippelt, G. Lottermoser, W. Amthauer, G. |
description | A series of Fe{sup 3+}-bearing Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) garnets was synthesized using solid-state synthesis methods. The synthetic products were characterized compositionally using electron microprobe analysis and inductively coupled plasma optical emission spectroscopy (ICP-OES) and structurally using X-ray powder diffraction and {sup 57}Fe Mössbauer spectroscopy. A maximum of about 0.25 Fe{sup 3+} pfu could be incorporated in Li{sub 7−3x}Fe{sub x}La{sub 3}Zr{sub 2}O{sub 12} garnet solid solutions. At Fe{sup 3+} concentrations lower than about 0.16 pfu, both tetragonal and cubic garnets were obtained in the synthesis experiments. X-ray powder diffraction analysis showed only a garnet phase for syntheses with starting materials having intended Fe{sup 3+} contents lower than 0.52 Fe{sup 3+} pfu. Back-scattered electron images made with an electron microprobe also showed no phase other than garnet for these compositions. The lattice parameter, a{sub 0}, for all solid-solution garnets is similar with a value of a{sub 0}≈12.98 Å regardless of the amount of Fe{sup 3+}. {sup 57}Fe Mössbauer spectroscopic measurements indicate the presence of poorly- or nano-crystalline FeLaO{sub 3} in syntheses with Fe{sup 3+} contents greater than 0.16 Fe{sup 3+} pfu. The composition of different phase pure Li{sub 7−3x}Fe{sub x}La{sub 3}Zr{sub 2}O{sub 12} garnets, as determined by electron microprobe (Fe, La, Zr) and ICP-OES (Li) measurements, give Li{sub 6.89}Fe{sub 0.03}La{sub 3.05}Zr{sub 2.01}O{sub 12}, Li{sub 6.66}Fe{sub 0.06}La{sub 3.06}Zr{sub 2.01}O{sub 12}, Li{sub 6.54}Fe{sub 0.12}La{sub 3.01}Zr{sub 1.98}O{sub 12}, and Li{sub 6.19}Fe{sub 0.19}La{sub 3.02}Zr{sub 2.04}O{sub 12}. The {sup 57}Fe Mössbauer spectrum of cubic Li{sub 6.54}Fe{sub 0.12}La{sub 3.01}Zr{sub 1.98}O{sub 12} garnet indicates that most Fe{sup 3+} occurs at the special crystallographic 24d position, which is the standard tetrahedrally coordinated site in garnet. Fe{sup 3+} in smaller amounts occurs at a general 96h site, which is only present for certain Li-oxide garnets, and in Li{sub 6.54}Fe{sub 0.12}La{sub 3.01}Zr{sub 1.98}O{sub 12} this Fe{sup 3+} has a distorted 4-fold coordination. - Graphical abstract: Cubic nominally Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) garnet is a promising candidate to be used as a solid electrolyte in Li-ion batteries. A series of Fe{sup 3+}-bearing LLZO garnets was synthesized and characterized compositionally and structurally. {sup 57}Mössbauer measu |
doi_str_mv | 10.1016/J.JSSC.2015.01.016 |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22486816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22486816</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_224868163</originalsourceid><addsrcrecordid>eNqNjUFLw0AUhBdRMNb-AU8PPErSfZtkm56LRUqhh_ZQvJRkfWlXwqbkbaEie_fsT_SXGII_QBj4ZpiBEeIBZYIS9WSZLDebeaIk5onEXvpKRChneTxVenctIimVirN8pm_FHfO7lIh5kUXCbY8E3DbnyjbWf0Dp3oCtJzh1VFNHzhC0NSzok88nSJ8CWAcr26cKpj9f3-klDF0Fl7AqB5OG124wKqwHogpwKDtHnu_FTV02TOM_jsTj4nk7f4lb9nbPpn82R9M6R8bvlcoKXaBO_7f6BSmmUY4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The solubility and site preference of Fe{sup 3+} in Li{sub 7−3x}Fe{sub x}La{sub 3}Zr{sub 2}O{sub 12} garnets</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Rettenwander, D. ; Geiger, C.A. ; Tribus, M. ; Tropper, P. ; Wagner, R. ; Tippelt, G. ; Lottermoser, W. ; Amthauer, G.</creator><creatorcontrib>Rettenwander, D. ; Geiger, C.A. ; Tribus, M. ; Tropper, P. ; Wagner, R. ; Tippelt, G. ; Lottermoser, W. ; Amthauer, G.</creatorcontrib><description>A series of Fe{sup 3+}-bearing Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) garnets was synthesized using solid-state synthesis methods. The synthetic products were characterized compositionally using electron microprobe analysis and inductively coupled plasma optical emission spectroscopy (ICP-OES) and structurally using X-ray powder diffraction and {sup 57}Fe Mössbauer spectroscopy. A maximum of about 0.25 Fe{sup 3+} pfu could be incorporated in Li{sub 7−3x}Fe{sub x}La{sub 3}Zr{sub 2}O{sub 12} garnet solid solutions. At Fe{sup 3+} concentrations lower than about 0.16 pfu, both tetragonal and cubic garnets were obtained in the synthesis experiments. X-ray powder diffraction analysis showed only a garnet phase for syntheses with starting materials having intended Fe{sup 3+} contents lower than 0.52 Fe{sup 3+} pfu. Back-scattered electron images made with an electron microprobe also showed no phase other than garnet for these compositions. The lattice parameter, a{sub 0}, for all solid-solution garnets is similar with a value of a{sub 0}≈12.98 Å regardless of the amount of Fe{sup 3+}. {sup 57}Fe Mössbauer spectroscopic measurements indicate the presence of poorly- or nano-crystalline FeLaO{sub 3} in syntheses with Fe{sup 3+} contents greater than 0.16 Fe{sup 3+} pfu. The composition of different phase pure Li{sub 7−3x}Fe{sub x}La{sub 3}Zr{sub 2}O{sub 12} garnets, as determined by electron microprobe (Fe, La, Zr) and ICP-OES (Li) measurements, give Li{sub 6.89}Fe{sub 0.03}La{sub 3.05}Zr{sub 2.01}O{sub 12}, Li{sub 6.66}Fe{sub 0.06}La{sub 3.06}Zr{sub 2.01}O{sub 12}, Li{sub 6.54}Fe{sub 0.12}La{sub 3.01}Zr{sub 1.98}O{sub 12}, and Li{sub 6.19}Fe{sub 0.19}La{sub 3.02}Zr{sub 2.04}O{sub 12}. The {sup 57}Fe Mössbauer spectrum of cubic Li{sub 6.54}Fe{sub 0.12}La{sub 3.01}Zr{sub 1.98}O{sub 12} garnet indicates that most Fe{sup 3+} occurs at the special crystallographic 24d position, which is the standard tetrahedrally coordinated site in garnet. Fe{sup 3+} in smaller amounts occurs at a general 96h site, which is only present for certain Li-oxide garnets, and in Li{sub 6.54}Fe{sub 0.12}La{sub 3.01}Zr{sub 1.98}O{sub 12} this Fe{sup 3+} has a distorted 4-fold coordination. - Graphical abstract: Cubic nominally Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) garnet is a promising candidate to be used as a solid electrolyte in Li-ion batteries. A series of Fe{sup 3+}-bearing LLZO garnets was synthesized and characterized compositionally and structurally. {sup 57}Mössbauer measurements were made to determine where Fe is incorporated in the crystal structure. X-ray diffraction, electron microprobe, ICP-OES and {sup 57}Mössbauer measurements are needed to obtain a full description of the synthetic products, some of which contain small amounts of nano- or poorly crystalline FeLaO{sub 3}. - Highlights: • A series of Fe{sup 3+}-bearing Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) garnets was synthesized and characterized compositionally and structurally. • {sup 57}Mössbauer measurements were made to determine where Fe is incorporated in the crystal structure. • Most Fe{sup 3+} substitutes for Li{sup +} in LLZO at the 24d and 96h sites in the cubic phase (Ia-3d). • No more than about 0.25 Fe{sup 3+} pfu can be incorporated into the LLZO garnet structure. • X-ray powder diffractions measurements indicate the presence of both cubic and tetragonal garnets phases in some syntheses. • The probable presence of small amounts of poorly or nano-crystalline FeLaO3 can only be identified by Mössbauer spectroscopy.</description><identifier>ISSN: 0022-4596</identifier><identifier>EISSN: 1095-726X</identifier><identifier>DOI: 10.1016/J.JSSC.2015.01.016</identifier><language>eng</language><publisher>United States</publisher><subject>CHEMICAL COMPOSITION ; CONCENTRATION RATIO ; CRYSTAL STRUCTURE ; ELECTRON MICROPROBE ANALYSIS ; EMISSION SPECTROSCOPY ; GARNETS ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; IONIC CONDUCTIVITY ; IRON 57 ; IRON IONS ; LANTHANUM COMPOUNDS ; LATTICE PARAMETERS ; LITHIUM COMPOUNDS ; LITHIUM IONS ; NANOSTRUCTURES ; SOLID ELECTROLYTES ; SOLID SOLUTIONS ; SYNTHESIS ; X-RAY DIFFRACTION ; ZIRCONATES</subject><ispartof>Journal of solid state chemistry, 2015-10, Vol.230</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22486816$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rettenwander, D.</creatorcontrib><creatorcontrib>Geiger, C.A.</creatorcontrib><creatorcontrib>Tribus, M.</creatorcontrib><creatorcontrib>Tropper, P.</creatorcontrib><creatorcontrib>Wagner, R.</creatorcontrib><creatorcontrib>Tippelt, G.</creatorcontrib><creatorcontrib>Lottermoser, W.</creatorcontrib><creatorcontrib>Amthauer, G.</creatorcontrib><title>The solubility and site preference of Fe{sup 3+} in Li{sub 7−3x}Fe{sub x}La{sub 3}Zr{sub 2}O{sub 12} garnets</title><title>Journal of solid state chemistry</title><description>A series of Fe{sup 3+}-bearing Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) garnets was synthesized using solid-state synthesis methods. The synthetic products were characterized compositionally using electron microprobe analysis and inductively coupled plasma optical emission spectroscopy (ICP-OES) and structurally using X-ray powder diffraction and {sup 57}Fe Mössbauer spectroscopy. A maximum of about 0.25 Fe{sup 3+} pfu could be incorporated in Li{sub 7−3x}Fe{sub x}La{sub 3}Zr{sub 2}O{sub 12} garnet solid solutions. At Fe{sup 3+} concentrations lower than about 0.16 pfu, both tetragonal and cubic garnets were obtained in the synthesis experiments. X-ray powder diffraction analysis showed only a garnet phase for syntheses with starting materials having intended Fe{sup 3+} contents lower than 0.52 Fe{sup 3+} pfu. Back-scattered electron images made with an electron microprobe also showed no phase other than garnet for these compositions. The lattice parameter, a{sub 0}, for all solid-solution garnets is similar with a value of a{sub 0}≈12.98 Å regardless of the amount of Fe{sup 3+}. {sup 57}Fe Mössbauer spectroscopic measurements indicate the presence of poorly- or nano-crystalline FeLaO{sub 3} in syntheses with Fe{sup 3+} contents greater than 0.16 Fe{sup 3+} pfu. The composition of different phase pure Li{sub 7−3x}Fe{sub x}La{sub 3}Zr{sub 2}O{sub 12} garnets, as determined by electron microprobe (Fe, La, Zr) and ICP-OES (Li) measurements, give Li{sub 6.89}Fe{sub 0.03}La{sub 3.05}Zr{sub 2.01}O{sub 12}, Li{sub 6.66}Fe{sub 0.06}La{sub 3.06}Zr{sub 2.01}O{sub 12}, Li{sub 6.54}Fe{sub 0.12}La{sub 3.01}Zr{sub 1.98}O{sub 12}, and Li{sub 6.19}Fe{sub 0.19}La{sub 3.02}Zr{sub 2.04}O{sub 12}. The {sup 57}Fe Mössbauer spectrum of cubic Li{sub 6.54}Fe{sub 0.12}La{sub 3.01}Zr{sub 1.98}O{sub 12} garnet indicates that most Fe{sup 3+} occurs at the special crystallographic 24d position, which is the standard tetrahedrally coordinated site in garnet. Fe{sup 3+} in smaller amounts occurs at a general 96h site, which is only present for certain Li-oxide garnets, and in Li{sub 6.54}Fe{sub 0.12}La{sub 3.01}Zr{sub 1.98}O{sub 12} this Fe{sup 3+} has a distorted 4-fold coordination. - Graphical abstract: Cubic nominally Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) garnet is a promising candidate to be used as a solid electrolyte in Li-ion batteries. A series of Fe{sup 3+}-bearing LLZO garnets was synthesized and characterized compositionally and structurally. {sup 57}Mössbauer measurements were made to determine where Fe is incorporated in the crystal structure. X-ray diffraction, electron microprobe, ICP-OES and {sup 57}Mössbauer measurements are needed to obtain a full description of the synthetic products, some of which contain small amounts of nano- or poorly crystalline FeLaO{sub 3}. - Highlights: • A series of Fe{sup 3+}-bearing Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) garnets was synthesized and characterized compositionally and structurally. • {sup 57}Mössbauer measurements were made to determine where Fe is incorporated in the crystal structure. • Most Fe{sup 3+} substitutes for Li{sup +} in LLZO at the 24d and 96h sites in the cubic phase (Ia-3d). • No more than about 0.25 Fe{sup 3+} pfu can be incorporated into the LLZO garnet structure. • X-ray powder diffractions measurements indicate the presence of both cubic and tetragonal garnets phases in some syntheses. • The probable presence of small amounts of poorly or nano-crystalline FeLaO3 can only be identified by Mössbauer spectroscopy.</description><subject>CHEMICAL COMPOSITION</subject><subject>CONCENTRATION RATIO</subject><subject>CRYSTAL STRUCTURE</subject><subject>ELECTRON MICROPROBE ANALYSIS</subject><subject>EMISSION SPECTROSCOPY</subject><subject>GARNETS</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>IONIC CONDUCTIVITY</subject><subject>IRON 57</subject><subject>IRON IONS</subject><subject>LANTHANUM COMPOUNDS</subject><subject>LATTICE PARAMETERS</subject><subject>LITHIUM COMPOUNDS</subject><subject>LITHIUM IONS</subject><subject>NANOSTRUCTURES</subject><subject>SOLID ELECTROLYTES</subject><subject>SOLID SOLUTIONS</subject><subject>SYNTHESIS</subject><subject>X-RAY DIFFRACTION</subject><subject>ZIRCONATES</subject><issn>0022-4596</issn><issn>1095-726X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNjUFLw0AUhBdRMNb-AU8PPErSfZtkm56LRUqhh_ZQvJRkfWlXwqbkbaEie_fsT_SXGII_QBj4ZpiBEeIBZYIS9WSZLDebeaIk5onEXvpKRChneTxVenctIimVirN8pm_FHfO7lIh5kUXCbY8E3DbnyjbWf0Dp3oCtJzh1VFNHzhC0NSzok88nSJ8CWAcr26cKpj9f3-klDF0Fl7AqB5OG124wKqwHogpwKDtHnu_FTV02TOM_jsTj4nk7f4lb9nbPpn82R9M6R8bvlcoKXaBO_7f6BSmmUY4</recordid><startdate>20151015</startdate><enddate>20151015</enddate><creator>Rettenwander, D.</creator><creator>Geiger, C.A.</creator><creator>Tribus, M.</creator><creator>Tropper, P.</creator><creator>Wagner, R.</creator><creator>Tippelt, G.</creator><creator>Lottermoser, W.</creator><creator>Amthauer, G.</creator><scope>OTOTI</scope></search><sort><creationdate>20151015</creationdate><title>The solubility and site preference of Fe{sup 3+} in Li{sub 7−3x}Fe{sub x}La{sub 3}Zr{sub 2}O{sub 12} garnets</title><author>Rettenwander, D. ; Geiger, C.A. ; Tribus, M. ; Tropper, P. ; Wagner, R. ; Tippelt, G. ; Lottermoser, W. ; Amthauer, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_224868163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CHEMICAL COMPOSITION</topic><topic>CONCENTRATION RATIO</topic><topic>CRYSTAL STRUCTURE</topic><topic>ELECTRON MICROPROBE ANALYSIS</topic><topic>EMISSION SPECTROSCOPY</topic><topic>GARNETS</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>IONIC CONDUCTIVITY</topic><topic>IRON 57</topic><topic>IRON IONS</topic><topic>LANTHANUM COMPOUNDS</topic><topic>LATTICE PARAMETERS</topic><topic>LITHIUM COMPOUNDS</topic><topic>LITHIUM IONS</topic><topic>NANOSTRUCTURES</topic><topic>SOLID ELECTROLYTES</topic><topic>SOLID SOLUTIONS</topic><topic>SYNTHESIS</topic><topic>X-RAY DIFFRACTION</topic><topic>ZIRCONATES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rettenwander, D.</creatorcontrib><creatorcontrib>Geiger, C.A.</creatorcontrib><creatorcontrib>Tribus, M.</creatorcontrib><creatorcontrib>Tropper, P.</creatorcontrib><creatorcontrib>Wagner, R.</creatorcontrib><creatorcontrib>Tippelt, G.</creatorcontrib><creatorcontrib>Lottermoser, W.</creatorcontrib><creatorcontrib>Amthauer, G.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Journal of solid state chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rettenwander, D.</au><au>Geiger, C.A.</au><au>Tribus, M.</au><au>Tropper, P.</au><au>Wagner, R.</au><au>Tippelt, G.</au><au>Lottermoser, W.</au><au>Amthauer, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The solubility and site preference of Fe{sup 3+} in Li{sub 7−3x}Fe{sub x}La{sub 3}Zr{sub 2}O{sub 12} garnets</atitle><jtitle>Journal of solid state chemistry</jtitle><date>2015-10-15</date><risdate>2015</risdate><volume>230</volume><issn>0022-4596</issn><eissn>1095-726X</eissn><abstract>A series of Fe{sup 3+}-bearing Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) garnets was synthesized using solid-state synthesis methods. The synthetic products were characterized compositionally using electron microprobe analysis and inductively coupled plasma optical emission spectroscopy (ICP-OES) and structurally using X-ray powder diffraction and {sup 57}Fe Mössbauer spectroscopy. A maximum of about 0.25 Fe{sup 3+} pfu could be incorporated in Li{sub 7−3x}Fe{sub x}La{sub 3}Zr{sub 2}O{sub 12} garnet solid solutions. At Fe{sup 3+} concentrations lower than about 0.16 pfu, both tetragonal and cubic garnets were obtained in the synthesis experiments. X-ray powder diffraction analysis showed only a garnet phase for syntheses with starting materials having intended Fe{sup 3+} contents lower than 0.52 Fe{sup 3+} pfu. Back-scattered electron images made with an electron microprobe also showed no phase other than garnet for these compositions. The lattice parameter, a{sub 0}, for all solid-solution garnets is similar with a value of a{sub 0}≈12.98 Å regardless of the amount of Fe{sup 3+}. {sup 57}Fe Mössbauer spectroscopic measurements indicate the presence of poorly- or nano-crystalline FeLaO{sub 3} in syntheses with Fe{sup 3+} contents greater than 0.16 Fe{sup 3+} pfu. The composition of different phase pure Li{sub 7−3x}Fe{sub x}La{sub 3}Zr{sub 2}O{sub 12} garnets, as determined by electron microprobe (Fe, La, Zr) and ICP-OES (Li) measurements, give Li{sub 6.89}Fe{sub 0.03}La{sub 3.05}Zr{sub 2.01}O{sub 12}, Li{sub 6.66}Fe{sub 0.06}La{sub 3.06}Zr{sub 2.01}O{sub 12}, Li{sub 6.54}Fe{sub 0.12}La{sub 3.01}Zr{sub 1.98}O{sub 12}, and Li{sub 6.19}Fe{sub 0.19}La{sub 3.02}Zr{sub 2.04}O{sub 12}. The {sup 57}Fe Mössbauer spectrum of cubic Li{sub 6.54}Fe{sub 0.12}La{sub 3.01}Zr{sub 1.98}O{sub 12} garnet indicates that most Fe{sup 3+} occurs at the special crystallographic 24d position, which is the standard tetrahedrally coordinated site in garnet. Fe{sup 3+} in smaller amounts occurs at a general 96h site, which is only present for certain Li-oxide garnets, and in Li{sub 6.54}Fe{sub 0.12}La{sub 3.01}Zr{sub 1.98}O{sub 12} this Fe{sup 3+} has a distorted 4-fold coordination. - Graphical abstract: Cubic nominally Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) garnet is a promising candidate to be used as a solid electrolyte in Li-ion batteries. A series of Fe{sup 3+}-bearing LLZO garnets was synthesized and characterized compositionally and structurally. {sup 57}Mössbauer measurements were made to determine where Fe is incorporated in the crystal structure. X-ray diffraction, electron microprobe, ICP-OES and {sup 57}Mössbauer measurements are needed to obtain a full description of the synthetic products, some of which contain small amounts of nano- or poorly crystalline FeLaO{sub 3}. - Highlights: • A series of Fe{sup 3+}-bearing Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) garnets was synthesized and characterized compositionally and structurally. • {sup 57}Mössbauer measurements were made to determine where Fe is incorporated in the crystal structure. • Most Fe{sup 3+} substitutes for Li{sup +} in LLZO at the 24d and 96h sites in the cubic phase (Ia-3d). • No more than about 0.25 Fe{sup 3+} pfu can be incorporated into the LLZO garnet structure. • X-ray powder diffractions measurements indicate the presence of both cubic and tetragonal garnets phases in some syntheses. • The probable presence of small amounts of poorly or nano-crystalline FeLaO3 can only be identified by Mössbauer spectroscopy.</abstract><cop>United States</cop><doi>10.1016/J.JSSC.2015.01.016</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4596 |
ispartof | Journal of solid state chemistry, 2015-10, Vol.230 |
issn | 0022-4596 1095-726X |
language | eng |
recordid | cdi_osti_scitechconnect_22486816 |
source | Elsevier ScienceDirect Journals Complete |
subjects | CHEMICAL COMPOSITION CONCENTRATION RATIO CRYSTAL STRUCTURE ELECTRON MICROPROBE ANALYSIS EMISSION SPECTROSCOPY GARNETS INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY IONIC CONDUCTIVITY IRON 57 IRON IONS LANTHANUM COMPOUNDS LATTICE PARAMETERS LITHIUM COMPOUNDS LITHIUM IONS NANOSTRUCTURES SOLID ELECTROLYTES SOLID SOLUTIONS SYNTHESIS X-RAY DIFFRACTION ZIRCONATES |
title | The solubility and site preference of Fe{sup 3+} in Li{sub 7−3x}Fe{sub x}La{sub 3}Zr{sub 2}O{sub 12} garnets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20solubility%20and%20site%20preference%20of%20Fe%7Bsup%203+%7D%20in%20Li%7Bsub%207%E2%88%923x%7DFe%7Bsub%20x%7DLa%7Bsub%203%7DZr%7Bsub%202%7DO%7Bsub%2012%7D%20garnets&rft.jtitle=Journal%20of%20solid%20state%20chemistry&rft.au=Rettenwander,%20D.&rft.date=2015-10-15&rft.volume=230&rft.issn=0022-4596&rft.eissn=1095-726X&rft_id=info:doi/10.1016/J.JSSC.2015.01.016&rft_dat=%3Costi%3E22486816%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |