Thermal transport across few-layer boron nitride encased by silica

Two dimensional hexagonal boron nitride (h-BN) attracted attention for use in applications. Using equilibrium molecular dynamics, we examine the phonon transport in few-layer h-BN encased by silica (SiO2). We report large interfacial thermal resistances, of about 2.2 × 10−8 m2 K W−1, which are not s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2015-07, Vol.107 (3)
Hauptverfasser: Ni, Yuxiang, Jiang, Jiechao, Meletis, Efstathios, Dumitricǎ, Traian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Applied physics letters
container_volume 107
creator Ni, Yuxiang
Jiang, Jiechao
Meletis, Efstathios
Dumitricǎ, Traian
description Two dimensional hexagonal boron nitride (h-BN) attracted attention for use in applications. Using equilibrium molecular dynamics, we examine the phonon transport in few-layer h-BN encased by silica (SiO2). We report large interfacial thermal resistances, of about 2.2 × 10−8 m2 K W−1, which are not sensitive to the number of h-BN layers or the SiO2 crystallinity. The h-BN/SiO2 superlattices exhibit ultra-low thermal conductivities across layers, as low as 0.3 W/m K. They are structurally stable up to 2000 K while retaining the low-thermal conductivity attributes. Our simulations indicate that incorporation of h-BN layers and nanoparticles in silica could establish thermal barriers and heat spreading paths, useful for high performance coatings and electronic device applications.
doi_str_mv 10.1063/1.4927240
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22486329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_4927240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-4231175dc84745c5a50edc219236c7f727863b84a184daf99a780123db2842533</originalsourceid><addsrcrecordid>eNotUMFKAzEUDKLgWj34BwFPHrYm7yWb7FGLVaHgpZ5DNpulkW22JAHp37vanoaBmWFmCLnnbMlZg098KVpQINgFqThTqkbO9SWpGGNYN63k1-Qm5--ZSkCsyMt259PejrQkG_NhSoVal6ac6eB_6tEefaLdlKZIYygp9J766Gz2Pe2ONIcxOHtLrgY7Zn93xgX5Wr9uV-_15vPtY_W8qR0CllrAXEXJ3mmhhHTSSuZ7B7wFbJwaFCjdYKeF5Vr0dmhbqzTjgH0HWoBEXJCHU-6USzDZheLdzk0xelcMgJjt0M6qx5Pqf0XygzmksLfpaDgzfxcZbs4X4S-IqlZq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal transport across few-layer boron nitride encased by silica</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ni, Yuxiang ; Jiang, Jiechao ; Meletis, Efstathios ; Dumitricǎ, Traian</creator><creatorcontrib>Ni, Yuxiang ; Jiang, Jiechao ; Meletis, Efstathios ; Dumitricǎ, Traian</creatorcontrib><description>Two dimensional hexagonal boron nitride (h-BN) attracted attention for use in applications. Using equilibrium molecular dynamics, we examine the phonon transport in few-layer h-BN encased by silica (SiO2). We report large interfacial thermal resistances, of about 2.2 × 10−8 m2 K W−1, which are not sensitive to the number of h-BN layers or the SiO2 crystallinity. The h-BN/SiO2 superlattices exhibit ultra-low thermal conductivities across layers, as low as 0.3 W/m K. They are structurally stable up to 2000 K while retaining the low-thermal conductivity attributes. Our simulations indicate that incorporation of h-BN layers and nanoparticles in silica could establish thermal barriers and heat spreading paths, useful for high performance coatings and electronic device applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4927240</identifier><language>eng</language><publisher>United States</publisher><subject>BORON NITRIDES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; ELECTRONIC EQUIPMENT ; LAYERS ; MOLECULAR DYNAMICS METHOD ; NANOPARTICLES ; PHONONS ; SILICA ; SILICON OXIDES ; SUPERLATTICES ; THERMAL CONDUCTIVITY ; TWO-DIMENSIONAL SYSTEMS</subject><ispartof>Applied physics letters, 2015-07, Vol.107 (3)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-4231175dc84745c5a50edc219236c7f727863b84a184daf99a780123db2842533</citedby><cites>FETCH-LOGICAL-c323t-4231175dc84745c5a50edc219236c7f727863b84a184daf99a780123db2842533</cites><orcidid>0000-0001-6320-1625 ; 0000-0001-8567-6998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22486329$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, Yuxiang</creatorcontrib><creatorcontrib>Jiang, Jiechao</creatorcontrib><creatorcontrib>Meletis, Efstathios</creatorcontrib><creatorcontrib>Dumitricǎ, Traian</creatorcontrib><title>Thermal transport across few-layer boron nitride encased by silica</title><title>Applied physics letters</title><description>Two dimensional hexagonal boron nitride (h-BN) attracted attention for use in applications. Using equilibrium molecular dynamics, we examine the phonon transport in few-layer h-BN encased by silica (SiO2). We report large interfacial thermal resistances, of about 2.2 × 10−8 m2 K W−1, which are not sensitive to the number of h-BN layers or the SiO2 crystallinity. The h-BN/SiO2 superlattices exhibit ultra-low thermal conductivities across layers, as low as 0.3 W/m K. They are structurally stable up to 2000 K while retaining the low-thermal conductivity attributes. Our simulations indicate that incorporation of h-BN layers and nanoparticles in silica could establish thermal barriers and heat spreading paths, useful for high performance coatings and electronic device applications.</description><subject>BORON NITRIDES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>ELECTRONIC EQUIPMENT</subject><subject>LAYERS</subject><subject>MOLECULAR DYNAMICS METHOD</subject><subject>NANOPARTICLES</subject><subject>PHONONS</subject><subject>SILICA</subject><subject>SILICON OXIDES</subject><subject>SUPERLATTICES</subject><subject>THERMAL CONDUCTIVITY</subject><subject>TWO-DIMENSIONAL SYSTEMS</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotUMFKAzEUDKLgWj34BwFPHrYm7yWb7FGLVaHgpZ5DNpulkW22JAHp37vanoaBmWFmCLnnbMlZg098KVpQINgFqThTqkbO9SWpGGNYN63k1-Qm5--ZSkCsyMt259PejrQkG_NhSoVal6ac6eB_6tEefaLdlKZIYygp9J766Gz2Pe2ONIcxOHtLrgY7Zn93xgX5Wr9uV-_15vPtY_W8qR0CllrAXEXJ3mmhhHTSSuZ7B7wFbJwaFCjdYKeF5Vr0dmhbqzTjgH0HWoBEXJCHU-6USzDZheLdzk0xelcMgJjt0M6qx5Pqf0XygzmksLfpaDgzfxcZbs4X4S-IqlZq</recordid><startdate>20150720</startdate><enddate>20150720</enddate><creator>Ni, Yuxiang</creator><creator>Jiang, Jiechao</creator><creator>Meletis, Efstathios</creator><creator>Dumitricǎ, Traian</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6320-1625</orcidid><orcidid>https://orcid.org/0000-0001-8567-6998</orcidid></search><sort><creationdate>20150720</creationdate><title>Thermal transport across few-layer boron nitride encased by silica</title><author>Ni, Yuxiang ; Jiang, Jiechao ; Meletis, Efstathios ; Dumitricǎ, Traian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-4231175dc84745c5a50edc219236c7f727863b84a184daf99a780123db2842533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>BORON NITRIDES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>ELECTRONIC EQUIPMENT</topic><topic>LAYERS</topic><topic>MOLECULAR DYNAMICS METHOD</topic><topic>NANOPARTICLES</topic><topic>PHONONS</topic><topic>SILICA</topic><topic>SILICON OXIDES</topic><topic>SUPERLATTICES</topic><topic>THERMAL CONDUCTIVITY</topic><topic>TWO-DIMENSIONAL SYSTEMS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Yuxiang</creatorcontrib><creatorcontrib>Jiang, Jiechao</creatorcontrib><creatorcontrib>Meletis, Efstathios</creatorcontrib><creatorcontrib>Dumitricǎ, Traian</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Yuxiang</au><au>Jiang, Jiechao</au><au>Meletis, Efstathios</au><au>Dumitricǎ, Traian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal transport across few-layer boron nitride encased by silica</atitle><jtitle>Applied physics letters</jtitle><date>2015-07-20</date><risdate>2015</risdate><volume>107</volume><issue>3</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Two dimensional hexagonal boron nitride (h-BN) attracted attention for use in applications. Using equilibrium molecular dynamics, we examine the phonon transport in few-layer h-BN encased by silica (SiO2). We report large interfacial thermal resistances, of about 2.2 × 10−8 m2 K W−1, which are not sensitive to the number of h-BN layers or the SiO2 crystallinity. The h-BN/SiO2 superlattices exhibit ultra-low thermal conductivities across layers, as low as 0.3 W/m K. They are structurally stable up to 2000 K while retaining the low-thermal conductivity attributes. Our simulations indicate that incorporation of h-BN layers and nanoparticles in silica could establish thermal barriers and heat spreading paths, useful for high performance coatings and electronic device applications.</abstract><cop>United States</cop><doi>10.1063/1.4927240</doi><orcidid>https://orcid.org/0000-0001-6320-1625</orcidid><orcidid>https://orcid.org/0000-0001-8567-6998</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2015-07, Vol.107 (3)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_22486329
source AIP Journals Complete; Alma/SFX Local Collection
subjects BORON NITRIDES
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
ELECTRONIC EQUIPMENT
LAYERS
MOLECULAR DYNAMICS METHOD
NANOPARTICLES
PHONONS
SILICA
SILICON OXIDES
SUPERLATTICES
THERMAL CONDUCTIVITY
TWO-DIMENSIONAL SYSTEMS
title Thermal transport across few-layer boron nitride encased by silica
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20transport%20across%20few-layer%20boron%20nitride%20encased%20by%20silica&rft.jtitle=Applied%20physics%20letters&rft.au=Ni,%20Yuxiang&rft.date=2015-07-20&rft.volume=107&rft.issue=3&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4927240&rft_dat=%3Ccrossref_osti_%3E10_1063_1_4927240%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true