Thermal transport across few-layer boron nitride encased by silica
Two dimensional hexagonal boron nitride (h-BN) attracted attention for use in applications. Using equilibrium molecular dynamics, we examine the phonon transport in few-layer h-BN encased by silica (SiO2). We report large interfacial thermal resistances, of about 2.2 × 10−8 m2 K W−1, which are not s...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2015-07, Vol.107 (3) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 107 |
creator | Ni, Yuxiang Jiang, Jiechao Meletis, Efstathios Dumitricǎ, Traian |
description | Two dimensional hexagonal boron nitride (h-BN) attracted attention for use in applications. Using equilibrium molecular dynamics, we examine the phonon transport in few-layer h-BN encased by silica (SiO2). We report large interfacial thermal resistances, of about 2.2 × 10−8 m2 K W−1, which are not sensitive to the number of h-BN layers or the SiO2 crystallinity. The h-BN/SiO2 superlattices exhibit ultra-low thermal conductivities across layers, as low as 0.3 W/m K. They are structurally stable up to 2000 K while retaining the low-thermal conductivity attributes. Our simulations indicate that incorporation of h-BN layers and nanoparticles in silica could establish thermal barriers and heat spreading paths, useful for high performance coatings and electronic device applications. |
doi_str_mv | 10.1063/1.4927240 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22486329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_4927240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-4231175dc84745c5a50edc219236c7f727863b84a184daf99a780123db2842533</originalsourceid><addsrcrecordid>eNotUMFKAzEUDKLgWj34BwFPHrYm7yWb7FGLVaHgpZ5DNpulkW22JAHp37vanoaBmWFmCLnnbMlZg098KVpQINgFqThTqkbO9SWpGGNYN63k1-Qm5--ZSkCsyMt259PejrQkG_NhSoVal6ac6eB_6tEefaLdlKZIYygp9J766Gz2Pe2ONIcxOHtLrgY7Zn93xgX5Wr9uV-_15vPtY_W8qR0CllrAXEXJ3mmhhHTSSuZ7B7wFbJwaFCjdYKeF5Vr0dmhbqzTjgH0HWoBEXJCHU-6USzDZheLdzk0xelcMgJjt0M6qx5Pqf0XygzmksLfpaDgzfxcZbs4X4S-IqlZq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal transport across few-layer boron nitride encased by silica</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ni, Yuxiang ; Jiang, Jiechao ; Meletis, Efstathios ; Dumitricǎ, Traian</creator><creatorcontrib>Ni, Yuxiang ; Jiang, Jiechao ; Meletis, Efstathios ; Dumitricǎ, Traian</creatorcontrib><description>Two dimensional hexagonal boron nitride (h-BN) attracted attention for use in applications. Using equilibrium molecular dynamics, we examine the phonon transport in few-layer h-BN encased by silica (SiO2). We report large interfacial thermal resistances, of about 2.2 × 10−8 m2 K W−1, which are not sensitive to the number of h-BN layers or the SiO2 crystallinity. The h-BN/SiO2 superlattices exhibit ultra-low thermal conductivities across layers, as low as 0.3 W/m K. They are structurally stable up to 2000 K while retaining the low-thermal conductivity attributes. Our simulations indicate that incorporation of h-BN layers and nanoparticles in silica could establish thermal barriers and heat spreading paths, useful for high performance coatings and electronic device applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4927240</identifier><language>eng</language><publisher>United States</publisher><subject>BORON NITRIDES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; ELECTRONIC EQUIPMENT ; LAYERS ; MOLECULAR DYNAMICS METHOD ; NANOPARTICLES ; PHONONS ; SILICA ; SILICON OXIDES ; SUPERLATTICES ; THERMAL CONDUCTIVITY ; TWO-DIMENSIONAL SYSTEMS</subject><ispartof>Applied physics letters, 2015-07, Vol.107 (3)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-4231175dc84745c5a50edc219236c7f727863b84a184daf99a780123db2842533</citedby><cites>FETCH-LOGICAL-c323t-4231175dc84745c5a50edc219236c7f727863b84a184daf99a780123db2842533</cites><orcidid>0000-0001-6320-1625 ; 0000-0001-8567-6998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22486329$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, Yuxiang</creatorcontrib><creatorcontrib>Jiang, Jiechao</creatorcontrib><creatorcontrib>Meletis, Efstathios</creatorcontrib><creatorcontrib>Dumitricǎ, Traian</creatorcontrib><title>Thermal transport across few-layer boron nitride encased by silica</title><title>Applied physics letters</title><description>Two dimensional hexagonal boron nitride (h-BN) attracted attention for use in applications. Using equilibrium molecular dynamics, we examine the phonon transport in few-layer h-BN encased by silica (SiO2). We report large interfacial thermal resistances, of about 2.2 × 10−8 m2 K W−1, which are not sensitive to the number of h-BN layers or the SiO2 crystallinity. The h-BN/SiO2 superlattices exhibit ultra-low thermal conductivities across layers, as low as 0.3 W/m K. They are structurally stable up to 2000 K while retaining the low-thermal conductivity attributes. Our simulations indicate that incorporation of h-BN layers and nanoparticles in silica could establish thermal barriers and heat spreading paths, useful for high performance coatings and electronic device applications.</description><subject>BORON NITRIDES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>ELECTRONIC EQUIPMENT</subject><subject>LAYERS</subject><subject>MOLECULAR DYNAMICS METHOD</subject><subject>NANOPARTICLES</subject><subject>PHONONS</subject><subject>SILICA</subject><subject>SILICON OXIDES</subject><subject>SUPERLATTICES</subject><subject>THERMAL CONDUCTIVITY</subject><subject>TWO-DIMENSIONAL SYSTEMS</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotUMFKAzEUDKLgWj34BwFPHrYm7yWb7FGLVaHgpZ5DNpulkW22JAHp37vanoaBmWFmCLnnbMlZg098KVpQINgFqThTqkbO9SWpGGNYN63k1-Qm5--ZSkCsyMt259PejrQkG_NhSoVal6ac6eB_6tEefaLdlKZIYygp9J766Gz2Pe2ONIcxOHtLrgY7Zn93xgX5Wr9uV-_15vPtY_W8qR0CllrAXEXJ3mmhhHTSSuZ7B7wFbJwaFCjdYKeF5Vr0dmhbqzTjgH0HWoBEXJCHU-6USzDZheLdzk0xelcMgJjt0M6qx5Pqf0XygzmksLfpaDgzfxcZbs4X4S-IqlZq</recordid><startdate>20150720</startdate><enddate>20150720</enddate><creator>Ni, Yuxiang</creator><creator>Jiang, Jiechao</creator><creator>Meletis, Efstathios</creator><creator>Dumitricǎ, Traian</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6320-1625</orcidid><orcidid>https://orcid.org/0000-0001-8567-6998</orcidid></search><sort><creationdate>20150720</creationdate><title>Thermal transport across few-layer boron nitride encased by silica</title><author>Ni, Yuxiang ; Jiang, Jiechao ; Meletis, Efstathios ; Dumitricǎ, Traian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-4231175dc84745c5a50edc219236c7f727863b84a184daf99a780123db2842533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>BORON NITRIDES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>ELECTRONIC EQUIPMENT</topic><topic>LAYERS</topic><topic>MOLECULAR DYNAMICS METHOD</topic><topic>NANOPARTICLES</topic><topic>PHONONS</topic><topic>SILICA</topic><topic>SILICON OXIDES</topic><topic>SUPERLATTICES</topic><topic>THERMAL CONDUCTIVITY</topic><topic>TWO-DIMENSIONAL SYSTEMS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Yuxiang</creatorcontrib><creatorcontrib>Jiang, Jiechao</creatorcontrib><creatorcontrib>Meletis, Efstathios</creatorcontrib><creatorcontrib>Dumitricǎ, Traian</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Yuxiang</au><au>Jiang, Jiechao</au><au>Meletis, Efstathios</au><au>Dumitricǎ, Traian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal transport across few-layer boron nitride encased by silica</atitle><jtitle>Applied physics letters</jtitle><date>2015-07-20</date><risdate>2015</risdate><volume>107</volume><issue>3</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Two dimensional hexagonal boron nitride (h-BN) attracted attention for use in applications. Using equilibrium molecular dynamics, we examine the phonon transport in few-layer h-BN encased by silica (SiO2). We report large interfacial thermal resistances, of about 2.2 × 10−8 m2 K W−1, which are not sensitive to the number of h-BN layers or the SiO2 crystallinity. The h-BN/SiO2 superlattices exhibit ultra-low thermal conductivities across layers, as low as 0.3 W/m K. They are structurally stable up to 2000 K while retaining the low-thermal conductivity attributes. Our simulations indicate that incorporation of h-BN layers and nanoparticles in silica could establish thermal barriers and heat spreading paths, useful for high performance coatings and electronic device applications.</abstract><cop>United States</cop><doi>10.1063/1.4927240</doi><orcidid>https://orcid.org/0000-0001-6320-1625</orcidid><orcidid>https://orcid.org/0000-0001-8567-6998</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2015-07, Vol.107 (3) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_22486329 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | BORON NITRIDES CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ELECTRONIC EQUIPMENT LAYERS MOLECULAR DYNAMICS METHOD NANOPARTICLES PHONONS SILICA SILICON OXIDES SUPERLATTICES THERMAL CONDUCTIVITY TWO-DIMENSIONAL SYSTEMS |
title | Thermal transport across few-layer boron nitride encased by silica |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20transport%20across%20few-layer%20boron%20nitride%20encased%20by%20silica&rft.jtitle=Applied%20physics%20letters&rft.au=Ni,%20Yuxiang&rft.date=2015-07-20&rft.volume=107&rft.issue=3&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4927240&rft_dat=%3Ccrossref_osti_%3E10_1063_1_4927240%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |