Detection of Cu{sub 2}Zn{sub 5}SnSe{sub 8} and Cu{sub 2}Zn{sub 6}SnSe{sub 9} phases in co-evaporated Cu{sub 2}ZnSnSe{sub 4} thin-films

Cu{sub 2}ZnSnSe{sub 4} thin-films for photovoltaic applications are investigated using combined atom probe tomography and ab initio density functional theory. The atom probe studies reveal nano-sized grains of Cu{sub 2}Zn{sub 5}SnSe{sub 8} and Cu{sub 2}Zn{sub 6}SnSe{sub 9} composition, which cannot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2015-10, Vol.107 (17)
Hauptverfasser: Schwarz, Torsten, Cojocaru-Mirédin, Oana, Raabe, Dierk, Choi, Pyuck-Pa, Marques, Miguel A. L., Botti, Silvana, Mousel, Marina, Redinger, Alex, Siebentritt, Susanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cu{sub 2}ZnSnSe{sub 4} thin-films for photovoltaic applications are investigated using combined atom probe tomography and ab initio density functional theory. The atom probe studies reveal nano-sized grains of Cu{sub 2}Zn{sub 5}SnSe{sub 8} and Cu{sub 2}Zn{sub 6}SnSe{sub 9} composition, which cannot be assigned to any known phase reported in the literature. Both phases are considered to be metastable, as density functional theory calculations yield positive energy differences with respect to the decomposition into Cu{sub 2}ZnSnSe{sub 4} and ZnSe. Among the conceivable crystal structures for both phases, a distorted zinc-blende structure shows the lowest energy, which is a few tens of meV below the energy of a wurtzite structure. A band gap of 1.1 eV is calculated for both the Cu{sub 2}Zn{sub 5}SnSe{sub 8} and Cu{sub 2}Zn{sub 6}SnSe{sub 9} phases. Possible effects of these phases on solar cell performance are discussed.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4934847