Electron mobility enhancement in (100) oxygen-inserted silicon channel

High performance improvement (+88% in peak Gm and >30% in linear and saturation region drain currents) was observed for N-MOSFETs with Oxygen-Inserted (OI) Si channel. From TCAD analysis of the C-V measurement data, the improvement was confirmed to be due to electron mobility enhancement of the O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2015-09, Vol.107 (12)
Hauptverfasser: Xu, Nuo, Takeuchi, Hideki, Hytha, Marek, Cody, Nyles W., Stephenson, Robert J., Kwak, Byungil, Cha, Seon Yong, Mears, Robert J., King Liu, Tsu-Jae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High performance improvement (+88% in peak Gm and >30% in linear and saturation region drain currents) was observed for N-MOSFETs with Oxygen-Inserted (OI) Si channel. From TCAD analysis of the C-V measurement data, the improvement was confirmed to be due to electron mobility enhancement of the OI Si channel (+75% at Ninv = 4.0 × 1012 cm−2 and +25% at Ninv = 8.0 × 1012 cm−2). Raman and high-resolution Rutherford backscattering measurements confirmed that negligible strain is induced in the OI Si layer, and hence, it cannot be used to explain the origin of mobility improvement. Poisson-Schrödinger based quantum mechanical simulation was performed, taking into account phonon, surface roughness and Coulomb scatterings. The OI layer was modeled as a “quasi barrier” region with reference to the Si conduction band edge to confine inversion electrons. Simulation explains the measured electron mobility enhancement as the confinement effect of inversion electrons while the formation of an super-steep retrograde well doping profile in the channel (as a result of dopant diffusion blocking effect accompanied by introduction of the OI layer) also contributes 50%–60% of the mobility improvement.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4931431