Grain size effect on electrical resistivity of bulk nanograined Bi{sub 2}Te{sub 3} material

The bulk nanograined Bi{sub 2}Te{sub 3} material with various mean grain sizes changing from ~ 97 nm to ~ 51 nm was prepared by microwave assisted solvothermal method and hot pseudo-isostatic pressure. It was found that the specific electrical resistivity of the material increases as mean grain size...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials characterization 2015-01, Vol.99
Hauptverfasser: Ivanov, Oleg, Maradudina, Oxana, Lyubushkin, Roman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The bulk nanograined Bi{sub 2}Te{sub 3} material with various mean grain sizes changing from ~ 97 nm to ~ 51 nm was prepared by microwave assisted solvothermal method and hot pseudo-isostatic pressure. It was found that the specific electrical resistivity of the material increases as mean grain size decreases. Such kind of the grain effect on the resistivity can be attributed to enhanced electron scattering at the grain boundaries. The Mayadas–Shatzkes model was applied to explain experimental results. In this model the grain boundaries are regarded as potential barriers which have to be overcome by the electrons. The reflectivity R of the grain boundaries for the material under study was estimated to be equal to ~ 0.7. - Highlights: • The bulk nanograined Bi{sub 2}Te{sub 3} material with various mean grain sizes was prepared. • It was found that the electrical resistivity of the material increases as grain size decreases. • The Mayadas–Shatzkes model was applied to explain experimental results. • The reflectivity R of the grain boundaries was estimated to be equal to ~ 0.7.
ISSN:1044-5803
1873-4189
DOI:10.1016/J.MATCHAR.2014.12.001