Quantitative description of the properties of extended defects in silicon by means of electron- and laser-beam-induced currents
A solar cell on a wafer of multicrystalline silicon containing grain boundaries was studied by the induced-current method. The sample was scanned by an electron beam and by a laser beam at two wavelengths (980 and 635 nm). The recorded induced-current maps were aligned by means of a specially develo...
Gespeichert in:
Veröffentlicht in: | Semiconductors (Woodbury, N.Y.) N.Y.), 2015-06, Vol.49 (6), p.741-745 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A solar cell on a wafer of multicrystalline silicon containing grain boundaries was studied by the induced-current method. The sample was scanned by an electron beam and by a laser beam at two wavelengths (980 and 635 nm). The recorded induced-current maps were aligned by means of a specially developed code, that enabled to analyze the same part of the grain boundary for three types of measurements. Optimization of the residual between simulated induced-current profiles and those obtained experimentally yielded quantitative estimates of the characteristics of a sample and its defects: the diffusion length of minority carriers and recombination velocity at the grain boundary. |
---|---|
ISSN: | 1063-7826 1090-6479 |
DOI: | 10.1134/S1063782615060226 |