Evaluation of convergence behavior of metamodeling techniques for bridging scales in multi-scale multimaterial simulation

The effectiveness of several metamodeling techniques, viz. the Polynomial Stochastic Collocation method, Adaptive Stochastic Collocation method, a Radial Basis Function Neural Network, a Kriging Method and a Dynamic Kriging Method is evaluated. This is done with the express purpose of using metamode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2015-08, Vol.294, p.585-604
Hauptverfasser: Sen, Oishik, Davis, Sean, Jacobs, Gustaaf, Udaykumar, H.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effectiveness of several metamodeling techniques, viz. the Polynomial Stochastic Collocation method, Adaptive Stochastic Collocation method, a Radial Basis Function Neural Network, a Kriging Method and a Dynamic Kriging Method is evaluated. This is done with the express purpose of using metamodels to bridge scales between micro- and macro-scale models in a multi-scale multimaterial simulation. The rate of convergence of the error when used to reconstruct hypersurfaces of known functions is studied. For sufficiently large number of training points, Stochastic Collocation methods generally converge faster than the other metamodeling techniques, while the DKG method converges faster when the number of input points is less than 100 in a two-dimensional parameter space. Because the input points correspond to computationally expensive micro/meso-scale computations, the DKG is favored for bridging scales in a multi-scale solver.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2015.03.043