Electronic structures and water reactivity of mixed metal sulfide cluster anions
The electronic structures and chemical reactivity of the mixed metal sulfide cluster anion (MoWS4(-)) have been investigated with density functional theory. Our study reveals the presence of two almost isoenergetic structural isomers, both containing two bridging sulfur atoms in a quartet state. How...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2014-08, Vol.141 (7), p.074305-074305 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The electronic structures and chemical reactivity of the mixed metal sulfide cluster anion (MoWS4(-)) have been investigated with density functional theory. Our study reveals the presence of two almost isoenergetic structural isomers, both containing two bridging sulfur atoms in a quartet state. However, the arrangement of the terminal sulfur atoms is different in the two isomers. In one isomer, the two metals are in the same oxidation state (each attached to one terminal S). In the second isomer, the two metals are in different oxidation states (with W in the higher oxidation state attached to both terminal S). The reactivity of water with the two lowest energy isomers has also been studied, with an emphasis on pathways leading to H2 release. The reactive behavior of the two isomers is different though the overall barriers in both systems are small. The origin of the differences are analyzed and discussed. The reaction pathways and barriers are compared with the corresponding behavior of monometallic sulfides (Mo2S4(-) and W2S4(-)) as well as mixed metal oxides (MoWO4(-)). |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4892671 |