Long-range interactions between polar bialkali ground-state molecules in arbitrary vibrational levels
We have calculated the isotropic C6 coefficients characterizing the long-range van der Waals interaction between two identical heteronuclear alkali-metal diatomic molecules in the same arbitrary vibrational level of their ground electronic state X(1)Σ(+). We consider the ten species made up of (7)Li...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2015-06, Vol.142 (21), p.214303-214303 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have calculated the isotropic C6 coefficients characterizing the long-range van der Waals interaction between two identical heteronuclear alkali-metal diatomic molecules in the same arbitrary vibrational level of their ground electronic state X(1)Σ(+). We consider the ten species made up of (7)Li, (23)Na, (39)K, (87)Rb, and (133)Cs. Following our previous work [Lepers et al., Phys. Rev. A 88, 032709 (2013)], we use the sum-over-state formula inherent to the second-order perturbation theory, composed of the contributions from the transitions within the ground state levels, from the transition between ground-state and excited state levels, and from a crossed term. These calculations involve a combination of experimental and quantum-chemical data for potential energy curves and transition dipole moments. We also investigate the case where the two molecules are in different vibrational levels and we show that the Moelwyn-Hughes approximation is valid provided that it is applied for each of the three contributions to the sum-over-state formula. Our results are particularly relevant in the context of inelastic and reactive collisions between ultracold bialkali molecules in deeply bound or in Feshbach levels. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4921622 |