Single photon simultaneous K-shell ionization and K-shell excitation. II. Specificities of hollow nitrogen molecular ions
The formalism developed in the companion Paper I is used here for the interpretation of spectra obtained recently on the nitrogen molecule. Double core-hole ionization K(-2) and core ionization-core excitation K(-2)V processes have been observed by coincidence electron spectroscopy after ionization...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2015-01, Vol.142 (1), p.014308-014308 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The formalism developed in the companion Paper I is used here for the interpretation of spectra obtained recently on the nitrogen molecule. Double core-hole ionization K(-2) and core ionization-core excitation K(-2)V processes have been observed by coincidence electron spectroscopy after ionization by synchrotron radiation at different photon energies. Theoretical and experimental cross sections reported on an absolute scale are in satisfactory agreement. The evolution with photon energy of the relative contribution of shake-up and conjugate shake-up processes is discussed. The first main resonance in the K(-2)V spectrum is assigned to a K(-2)π(∗) state mainly populated by the 1s→ lowest unoccupied molecular orbital dipolar excitation, as it is in the K(-1)V NEXAFS (Near-Edge X-ray Absorption Fine Structure) signals. Closer to the K(-2) threshold Rydberg resonances have been also identified, and among them a K(-2)σ(∗) resonance characterized by a large amount of 2s/2p hybridization, and double K(-2)(2σ(∗)/1π/3σ)(-1)1π(∗2) shake-up states. These resonances correspond in NEXAFS spectra to, respectively, the well-known σ(∗) shape resonance and double excitation K(-1)(2σ(∗)/1π/3σ)(-1)1π(∗2) resonances, all being positioned above the threshold. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4904274 |