Multidiagnostic analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range
The dynamics of ions in ultrafast laser ablation of metals is studied over fluences ranging from the ablation threshold up to ≈75 J/cm2 by means of three well-established diagnostic techniques. Langmuir probe, Faraday cup, and spectrally resolved intensified charge coupled device imaging simultaneou...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2015-02, Vol.117 (8) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dynamics of ions in ultrafast laser ablation of metals is studied over fluences ranging from the ablation threshold up to ≈75 J/cm2 by means of three well-established diagnostic techniques. Langmuir probe, Faraday cup, and spectrally resolved intensified charge coupled device imaging simultaneously monitored the ions produced during ultrafast laser ablation of a pure copper target with 800 nm, ≈50 fs, Ti: Sapphire laser pulses. The fluence dependence of ion yield is analyzed, resulting in the observance of three different regimes. The specific ion yield shows a maximum at about 4–5 J/cm2, followed by a gradual reduction and a transition to a high-fluence regime above ≈50 J/cm2. The fluence dependence of the copper ions angular distribution is also analyzed, observing a gradual increase in forward-peaking of Cu ions for fluences up to ≈10 J/cm2. A broader ion component is observed at larger angles for fluences larger than ≈10 J/cm2. Finally, an experimental characterization of the ionic angular distribution for several metallic targets (Mg, Al, Cr, Fe, Cu, and W) is carried out at a relatively high fluence of ≈66 J/cm2. Interestingly, the ion emission from the volatile metals shows a narrow, forward-peaked distribution, and a high peak ion yield compared to the refractory metals. Moreover, the width of ionic angular distributions presents a striking correlation with the peak ion yield. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4913505 |