Synthesis, characterization of WS{sub 2} nanostructures by vapor phase deposition

Ultrathin two-dimensional WS{sub 2} nanostructures with various morphologies have been prepared on SiO{sub 2}/Si (300 nm) and sapphire substrates by vapor phase deposition method. Simultaneously, tungsten nanostructures have also been obtained during the growth process. The nanostructures and morpho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2015-02, Vol.117 (6)
Hauptverfasser: Fan, Yinping, Li, Jun, Luo, Siwei, Tang, Chao, Zhong, Jianxin, Laboratory for Quantum Engineering and Micro-Nano Energy Technology and Department of Physics, Xiangtan University, Hunan 411105, Hao, Guolin, Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultrathin two-dimensional WS{sub 2} nanostructures with various morphologies have been prepared on SiO{sub 2}/Si (300 nm) and sapphire substrates by vapor phase deposition method. Simultaneously, tungsten nanostructures have also been obtained during the growth process. The nanostructures and morphologies of as-prepared products were systematically characterized by employing atomic force microscopy, Raman spectroscopy as well as scanning electron spectroscopy. The electrostatic properties of WS{sub 2} nanostructures were investigated exhibiting uniform surface potential and charge distributions. We have also detected the photoluminescence properties of WS{sub 2} nanostructures, which are dependent on the thickness and nanostructures of synthesized WS{sub 2}. These results suggest that the optoelectronic properties of WS{sub 2} nanostructures can be effectively tuned by quantum confinement effect and nanostructures.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4907688