Fabrication and orientation control of highly cation-ordered epitaxial PbSc{sub 0.5}Ta{sub 0.5}O{sub 3} thin films on Si (100)

Highly cation-ordered (100) and (110)-oriented PbSc{sub 0.5}Ta{sub 0.5}O{sub 3} (PST) films were deposited on buffered Si (100) substrates using pulsed laser deposition. Switching of crystal orientation from (100) to (110) was achieved by replacing the Si (100)/ZrO2:Y2O3 (100)/CeO2 (100)/LaNiO3 (100...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2015-01, Vol.117 (4)
Hauptverfasser: Chopra, Anuj, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, Alexe, Marin, Department of Physics, University of Warwick, Coventry CV4 7AL, Hesse, Dietrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Highly cation-ordered (100) and (110)-oriented PbSc{sub 0.5}Ta{sub 0.5}O{sub 3} (PST) films were deposited on buffered Si (100) substrates using pulsed laser deposition. Switching of crystal orientation from (100) to (110) was achieved by replacing the Si (100)/ZrO2:Y2O3 (100)/CeO2 (100)/LaNiO3 (100)/PST (100) heterostructure with Si (100)/ZrO2:Y2O3 (YSZ) (100)/SrRuO3 (110)/PST (110). The out-of-plane and in-plane crystal orientation and internal microstructure of (001) and (110) PST films were analyzed in detail by X-ray diffraction, pole figure measurements, and transmission electron microscopy. XRD superstructure reflections indicate that both (100) and (110) PST films are highly cation-ordered and transmission electron microscopy measurements show nano-domains of 15 nm size. The electrical measurements show that the PST films are ferroelectric and that the ferroelectric properties are linked to the microstructure. We have demonstrated the successful integration of PST films on Si substrates with control on growth orientation; this approach can be extended to other oxides to be integrated on silicon substrates for future device applications.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4906845