Controlling the interface charge density in GaN-based metal-oxide-semiconductor heterostructures by plasma oxidation of metal layers

In recent years, investigating and engineering the oxide-semiconductor interface in GaN-based devices has come into focus. This has been driven by a large effort to increase the gate robustness and to obtain enhancement mode transistors. Since it has been shown that deep interface states act as fixe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2015-06, Vol.117 (21)
Hauptverfasser: Hahn, Herwig, Pécz, Béla, Kovács, András, Heuken, Michael, Kalisch, Holger, Vescan, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, investigating and engineering the oxide-semiconductor interface in GaN-based devices has come into focus. This has been driven by a large effort to increase the gate robustness and to obtain enhancement mode transistors. Since it has been shown that deep interface states act as fixed interface charge in the typical transistor operating regime, it appears desirable to intentionally incorporate negative interface charge, and thus, to allow for a positive shift in threshold voltage of transistors to realise enhancement mode behaviour. A rather new approach to obtain such negative charge is the plasma-oxidation of thin metal layers. In this study, we present transmission electron microscopy and energy dispersive X-ray spectroscopy analysis as well as electrical data for Al-, Ti-, and Zr-based thin oxide films on a GaN-based heterostructure. It is shown that the plasma-oxidised layers have a polycrystalline morphology. An interfacial amorphous oxide layer is only detectable in the case of Zr. In addition, all films exhibit net negative charge with varying densities. The Zr layer is providing a negative interface charge density of more than 1 × 1013 cm–2 allowing to considerably shift the threshold voltage to more positive values.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4921867