Comparison of the order of magnetic phase transitions in several magnetocaloric materials using the rescaled universal curve, Banerjee and mean field theory criteria

Magnetocaloric materials with second order phase transition near the Curie temperature can be described by critical phenomena theory. In this theory, scaling, universality, and renormalization are key concepts from which several phase transition order criteria are derived. In this work, the rescaled...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2015-05, Vol.117 (17)
Hauptverfasser: Burrola-Gándara, L. A., Santillan-Rodriguez, C. R., Rivera-Gomez, F. J., Saenz-Hernandez, R. J., Botello-Zubiate, M. E., Matutes-Aquino, J. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetocaloric materials with second order phase transition near the Curie temperature can be described by critical phenomena theory. In this theory, scaling, universality, and renormalization are key concepts from which several phase transition order criteria are derived. In this work, the rescaled universal curve, Banerjee and mean field theory criteria were used to make a comparison for several magnetocaloric materials including pure Gd, SmCo1.8Fe0.2, MnFeP0.46As0.54, and La0.7Ca0.15Sr0.15MnO3. Pure Gd, SmCo1.8Fe0.2, and La0.7Ca0.15Sr0.15MnO3 present a collapse of the rescaled magnetic entropy change curves into a universal curve, which indicates a second order phase transition; applying Banerjee criterion to H/σ vs σ2 Arrot plots and the mean field theory relation |ΔSM| ∝ (μ0H/Tc)2/3 for the same materials also determines a second order phase transition. However, in the MnFeP0.46As0.54 sample, the Banerjee criterion applied to the H/σ vs σ2 Arrot plot indicates a first order magnetic phase transition, while the mean field theory prediction for a second order phase transition, |ΔSM| ∝ (μ0H/Tc)2/3, describes a second order behavior. Also, a mixture of first and second order behavior was indicated by the rescaled universal curve criterion. The diverse results obtained for each criterion in MnFeP0.46As0.54 are apparently related to the magnetoelastic effect and to the simultaneous presence of weak and strong magnetism in Fe (3f) and Mn (3g) alternate atomic layers, respectively. The simultaneous application of the universal curve, the Banerjee and the mean field theory criteria has allowed a better understanding about the nature of the order of the phase transitions in different magnetocaloric materials.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4918340