Room temperature magnetic and dielectric properties of cobalt doped CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

CaCu{sub 3}Ti{sub 4−x}Co{sub x}O{sub 12} (x = 0, 0.2, 0.4) ceramics were prepared by a conventional solid state reaction, and the effects of cobalt doping on the room temperature magnetic and dielectric properties were investigated. Both X-ray diffraction and energy dispersive X-ray spectroscopy con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2015-05, Vol.117 (17)
Hauptverfasser: Mu, Chunhong, Song, Yuanqiang, Wang, Xiaoning, Wang, Haibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CaCu{sub 3}Ti{sub 4−x}Co{sub x}O{sub 12} (x = 0, 0.2, 0.4) ceramics were prepared by a conventional solid state reaction, and the effects of cobalt doping on the room temperature magnetic and dielectric properties were investigated. Both X-ray diffraction and energy dispersive X-ray spectroscopy confirmed the presence of Cu and Co rich phase at grain boundaries of Co-doped ceramics. Scanning electron microscopy micrographs of Co-doped samples showed a striking change from regular polyhedral particle type in pure CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) to sheet-like grains with certain growth orientation. Undoped CaCu{sub 3}Ti{sub 4}O{sub 12} is well known for its colossal dielectric constant in a broad temperature and frequency range. The dielectric constant value was slightly changed by 5 at. % and 10 at. % Co doping, whereas the second relaxation process was clearly separated in low frequency region at room temperature. A multirelaxation mechanism was proposed to be the origin of the colossal dielectric constant. In addition, the permeability spectra measurements indicated Co-doped CCTO with good magnetic properties, showing the initial permeability (μ′) as high as 5.5 and low magnetic loss (μ″ < 0.2) below 3 MHz. And the interesting ferromagnetic superexchange coupling in Co-doped CaCu{sub 3}Ti{sub 4}O{sub 12} was discussed.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4916116