Generalizing the Connes Moscovici Hopf algebra to contain all rooted trees

This paper defines a generalization of the Connes-Moscovici Hopf algebra, H(1), that contains the entire Hopf algebra of rooted trees. A relationship between the former, a much studied object in non-commutative geometry, and the latter, a much studied object in perturbative quantum field theory, has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2015-04, Vol.56 (4), p.1
Hauptverfasser: Agarwala, Susama, Delaney, Colleen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper defines a generalization of the Connes-Moscovici Hopf algebra, H(1), that contains the entire Hopf algebra of rooted trees. A relationship between the former, a much studied object in non-commutative geometry, and the latter, a much studied object in perturbative quantum field theory, has been established by Connes and Kreimer. The results of this paper open the door to study the cohomology of the Hopf algebra of rooted trees.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4916291