Stable and efficient momentum-space solutions of the time-dependent Schrödinger equation for one-dimensional atoms in strong laser fields

One-dimensional model systems have a particular role in strong-field physics when gaining physical insight by computing data over a large range of parameters, or when performing numerous time propagations within, e.g., optimal control theory. Here we derive a scheme that removes a singularity in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2014-12, Vol.279, p.174-181
Hauptverfasser: Shvetsov-Shilovski, N.I., Räsänen, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One-dimensional model systems have a particular role in strong-field physics when gaining physical insight by computing data over a large range of parameters, or when performing numerous time propagations within, e.g., optimal control theory. Here we derive a scheme that removes a singularity in the one-dimensional Schrödinger equation in momentum space for a particle in the commonly used soft-core Coulomb potential. By using this scheme we develop two numerical approaches to the time-dependent Schrödinger equation in momentum space. The first approach employs the expansion of the momentum-space wave function over the eigenstates of the field-free Hamiltonian, and it is shown to be more efficient for laser parameters usual in strong field physics. The second approach employs the Crank–Nicolson scheme or the method of lines for time-propagation. The both methods are readily applicable for large-scale numerical simulations in one-dimensional model systems.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2014.09.006