STATISTICAL STUDY OF RECONNECTION EXHAUSTS IN THE SOLAR WIND

Magnetic reconnection is a fundamental process that changes magnetic field configuration and converts a magnetic energy to flow energy and plasma heating. This paper presents a survey of the plasma and magnetic field parameters inside 418 reconnection exhausts identified in the WIND data from 1995-2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2014-11, Vol.796 (1), p.1-7
Hauptverfasser: Enzl, J, Prech, L, Safrankova, J, Nemecek, Z
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic reconnection is a fundamental process that changes magnetic field configuration and converts a magnetic energy to flow energy and plasma heating. This paper presents a survey of the plasma and magnetic field parameters inside 418 reconnection exhausts identified in the WIND data from 1995-2012. The statistical analysis is oriented on the re-distribution of the magnetic energy released due to reconnection between a plasma acceleration and its heating. The results show that both the portion of the energy deposited into heat as well as the energy spent on the acceleration of the exhaust plasma rise with the magnetic shear angle in accord with the increase of the magnetic flux available for reconnection. The decrease of the normalized exhaust speed with the increasing magnetic shear suggests a decreasing efficiency of the acceleration and/or the increasing efficiency of heating in high-shear events. However, we have found that the already suggested relation between the exhaust speed and temperature enhancement would be rather considered as an upper limit of the plasma heating during reconnection regardless of the shear angle.
ISSN:1538-4357
0004-637X
1538-4357
DOI:10.1088/0004-637X/796/1/21