COMPARISON OF THE DUST AND GAS RADIAL STRUCTURE IN THE TRANSITION DISK [PZ99] J160421.7-213028
We present ALMA observations of the 880 μm continuum and CO J = 3-2 line emission from the transition disk around [PZ99] J160421.7-213028, a solar mass star in the Upper Scorpius OB association. Analysis of the continuum data indicates that 80% of the dust mass is concentrated in an annulus extendin...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2014-08, Vol.791 (1), p.42 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present ALMA observations of the 880 μm continuum and CO J = 3-2 line emission from the transition disk around [PZ99] J160421.7-213028, a solar mass star in the Upper Scorpius OB association. Analysis of the continuum data indicates that 80% of the dust mass is concentrated in an annulus extending between 79 and 114 AU in radius. Dust is robustly detected inside the annulus, at a mass surface density 100 times lower than that at 80 AU. The CO emission in the inner disk also shows a significantly decreased mass surface density, but we infer a cavity radius of only 31 AU for the gas. The large separation of the dust and gas cavity edges, as well as the high radial concentration of millimeter-sized dust grains, is qualitatively consistent with the predictions of pressure trap models that include hydrodynamical disk-planet interactions and dust coagulation/fragmentation processes. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.1088/0004-637X/791/1/42 |