INSIGHTS ON THE STELLAR MASS-METALLICITY RELATION FROM THE CALIFA SURVEY
We use spatially and temporally resolved maps of stellar population properties of 300 galaxies from the CALIFA integral field survey to investigate how the stellar metallicity (Z sub(*)) relates to the total stellar mass (M sub(*)) and the local mass surface density ( mu sub(*)) in both spheroidal-...
Gespeichert in:
Veröffentlicht in: | Astrophysical journal. Letters 2014-08, Vol.791 (1), p.1-5 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use spatially and temporally resolved maps of stellar population properties of 300 galaxies from the CALIFA integral field survey to investigate how the stellar metallicity (Z sub(*)) relates to the total stellar mass (M sub(*)) and the local mass surface density ( mu sub(*)) in both spheroidal- and disk-dominated galaxies. The galaxies are shown to follow a clear stellar mass-metallicity relation (MZR) over the whole 10 super(9)-10 super(12) M sub([middot in circle]) range. This relation is steeper than the one derived from nebular abundances, which is similar to the flatter stellar MZR derived when we consider only young stars. We also find a strong relation between the local values of mu sub(*) and Z sub(*) (the mu ZR), betraying the influence of local factors in determining Z sub(*). This shows that both local ( mu sub(*)-driven) and global (M sub(*)-driven) processes are important in determining metallicity in galaxies. We find that the overall balance between local and global effects varies with the location within a galaxy. In disks, mu sub(*) regulates Z sub(*), producing a strong mu ZR whose amplitude is modulated by M sub(*). In spheroids it is M sub(*) that dominates the physics of star formation and chemical enrichment, with mu sub(*) playing a minor, secondary role. These findings agree with our previous analysis of the star formation histories of CALIFA galaxies, which showed that mean stellar ages are mainly governed by surface density in galaxy disks and by total mass in spheroids. |
---|---|
ISSN: | 2041-8213 2041-8205 2041-8213 |
DOI: | 10.1088/2041-8205/791/1/L16 |