Covering sets in R{sup m}

The paper investigates questions related to Borsuk's classical problem of partitioning a set in Euclidean space into subsets of smaller diameter, as well as to the well-known Nelson-Erdős-Hadwiger problem on the chromatic number of a Euclidean space. The results of the work are obtained using c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2014-08, Vol.205 (8)
1. Verfasser: Filimonov, V P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper investigates questions related to Borsuk's classical problem of partitioning a set in Euclidean space into subsets of smaller diameter, as well as to the well-known Nelson-Erdős-Hadwiger problem on the chromatic number of a Euclidean space. The results of the work are obtained using combinatorial and geometric methods alike. A new approach to the investigation of such problems is suggested; it leads to a collection of results which significantly improve all results known so far. Bibliography: 58 titles.
ISSN:1064-5616
1468-4802
DOI:10.1070/SM2014v205n08ABEH004414