Direct synthesis of thermochromic VO{sub 2} through hydrothermal reaction

Thermochromic VO{sub 2} was directly synthesized using hydrothermal techniques. The effects of formation conditions on the structure and morphology of the final product were studied through X-ray diffraction (XRD), and scanning electron microscopy (SEM). Unique hollow sphere morphology was observed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solid state chemistry 2014-04, Vol.212
Hauptverfasser: Alie, David, University of Denver, 2199 South High Street, Denver, CO, Gedvilas, Lynn, Wang, Zhiwei, The University of Toledo, Toledo, OH 43606, Tenent, Robert, Engtrakul, Chaiwat, Yan, Yanfa, Shaheen, Sean E., Dillon, Anne C., Ban, Chunmei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermochromic VO{sub 2} was directly synthesized using hydrothermal techniques. The effects of formation conditions on the structure and morphology of the final product were studied through X-ray diffraction (XRD), and scanning electron microscopy (SEM). Unique hollow sphere morphology was observed for the synthesized VO{sub 2} powders. Ex-situ XRD studies after heat treatment confirmed the thermal stability of the VO{sub 2} structure. Thermochromic properties, as a consequence of the reversible structural transformation between monoclinic VO{sub 2} and tetragonal phases, were observed by Fourier transform infrared spectroscopy (FTIR). - Graphical abstract: Thermochromic VO{sub 2} crystals with hollow spherical and asterisk shape were directly synthesized using hydrothermal techniques. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) studies confirmed the thermal stability and the reversible thermochromic properties of the VO{sub 2} structure. - Highlights: • One-step synthesis of thermochromic VO{sub 2} monoclinic phase, and VO{sub 2} (A and B phases) using hydrothermal technique. VO{sub 2} (A), VO{sub 2} (B). • Identification of the relationship between synthesis conditions and the morphology/structure of the final products. • Formation of VO{sub 2} monoclinic phase with an interesting hollow sphere shape. • Demonstration of superior thermal stability of the VO{sub 2} monoclinic phase. • Characterizing the thermochromic properties of VO{sub 2} monoclinic phase.
ISSN:0022-4596
1095-726X
DOI:10.1016/J.JSSC.2013.10.023