Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits

Many superconducting qubits are highly sensitive to dielectric loss, making the fabrication of coherent quantum circuits challenging. To elucidate this issue, we characterize the interfaces and surfaces of superconducting coplanar waveguide resonators and study the associated microwave loss. We show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2014-08, Vol.105 (6)
Hauptverfasser: Quintana, C. M., Megrant, A., Chen, Z., Dunsworth, A., Chiaro, B., Barends, R., Campbell, B., Chen, Yu, Hoi, I.-C., Jeffrey, E., Kelly, J., Mutus, J. Y., O'Malley, P. J. J., Neill, C., Roushan, P., Sank, D., Vainsencher, A., Wenner, J., White, T. C., Cleland, A. N., Martinis, John M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Applied physics letters
container_volume 105
creator Quintana, C. M.
Megrant, A.
Chen, Z.
Dunsworth, A.
Chiaro, B.
Barends, R.
Campbell, B.
Chen, Yu
Hoi, I.-C.
Jeffrey, E.
Kelly, J.
Mutus, J. Y.
O'Malley, P. J. J.
Neill, C.
Roushan, P.
Sank, D.
Vainsencher, A.
Wenner, J.
White, T. C.
Cleland, A. N.
Martinis, John M.
description Many superconducting qubits are highly sensitive to dielectric loss, making the fabrication of coherent quantum circuits challenging. To elucidate this issue, we characterize the interfaces and surfaces of superconducting coplanar waveguide resonators and study the associated microwave loss. We show that contamination induced by traditional qubit lift-off processing is particularly detrimental to quality factors without proper substrate cleaning, while roughness plays at most a small role. Aggressive surface treatment is shown to damage the crystalline substrate and degrade resonator quality. We also introduce methods to characterize and remove ultra-thin resist residue, providing a way to quantify and minimize remnant sources of loss on device surfaces.
doi_str_mv 10.1063/1.4893297
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22318007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126571898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-54f251ce614cb4184936a2edb003961bdf8a74c03ca0ea07b3e55946f39e1a73</originalsourceid><addsrcrecordid>eNpNkD9PwzAQxS0EEqUw8A0iMTGk-OzEiUdU8U-qxNLdci4X6orare0M8OkJLQPT6el-d3rvMXYLfAFcyQdYVK2WQjdnbAa8aUoJ0J6zGedclkrXcMmuUtpOshZSzth2ubHRYqbovm12wRfW90WkfsSjCkOxcxjDYLvo8EiUzk9b6oueMGwokkcqnC_SuKeIwR9P_UdxGK3P465AF3F0OV2zi8F-Jrr5m3O2fn5aL1_L1fvL2_JxVaJsVS7rahA1ICmosKugrbRUVlDfTQm0gq4fWttUyCVaTpY3naS61pUapCawjZyzu9PbkLIzCV0m3Ey2PGE2QkhoOf9H7WM4jJSy2YYx-smXESBU3UCr24m6P1FTAylFGsw-up2NXwa4-e3bgPnrW_4A4KNzdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126571898</pqid></control><display><type>article</type><title>Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Quintana, C. M. ; Megrant, A. ; Chen, Z. ; Dunsworth, A. ; Chiaro, B. ; Barends, R. ; Campbell, B. ; Chen, Yu ; Hoi, I.-C. ; Jeffrey, E. ; Kelly, J. ; Mutus, J. Y. ; O'Malley, P. J. J. ; Neill, C. ; Roushan, P. ; Sank, D. ; Vainsencher, A. ; Wenner, J. ; White, T. C. ; Cleland, A. N. ; Martinis, John M.</creator><creatorcontrib>Quintana, C. M. ; Megrant, A. ; Chen, Z. ; Dunsworth, A. ; Chiaro, B. ; Barends, R. ; Campbell, B. ; Chen, Yu ; Hoi, I.-C. ; Jeffrey, E. ; Kelly, J. ; Mutus, J. Y. ; O'Malley, P. J. J. ; Neill, C. ; Roushan, P. ; Sank, D. ; Vainsencher, A. ; Wenner, J. ; White, T. C. ; Cleland, A. N. ; Martinis, John M.</creatorcontrib><description>Many superconducting qubits are highly sensitive to dielectric loss, making the fabrication of coherent quantum circuits challenging. To elucidate this issue, we characterize the interfaces and surfaces of superconducting coplanar waveguide resonators and study the associated microwave loss. We show that contamination induced by traditional qubit lift-off processing is particularly detrimental to quality factors without proper substrate cleaning, while roughness plays at most a small role. Aggressive surface treatment is shown to damage the crystalline substrate and degrade resonator quality. We also introduce methods to characterize and remove ultra-thin resist residue, providing a way to quantify and minimize remnant sources of loss on device surfaces.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4893297</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Circuits ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Coplanar waveguides ; Dielectric loss ; DIELECTRIC MATERIALS ; MICROSTRUCTURE ; MICROWAVE EQUIPMENT ; QUBITS ; Qubits (quantum computing) ; RESONATORS ; Substrates ; SUPERCONDUCTING DEVICES ; Superconductivity ; Surface treatment ; SURFACE TREATMENTS</subject><ispartof>Applied physics letters, 2014-08, Vol.105 (6)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-54f251ce614cb4184936a2edb003961bdf8a74c03ca0ea07b3e55946f39e1a73</citedby><cites>FETCH-LOGICAL-c386t-54f251ce614cb4184936a2edb003961bdf8a74c03ca0ea07b3e55946f39e1a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22318007$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Quintana, C. M.</creatorcontrib><creatorcontrib>Megrant, A.</creatorcontrib><creatorcontrib>Chen, Z.</creatorcontrib><creatorcontrib>Dunsworth, A.</creatorcontrib><creatorcontrib>Chiaro, B.</creatorcontrib><creatorcontrib>Barends, R.</creatorcontrib><creatorcontrib>Campbell, B.</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Hoi, I.-C.</creatorcontrib><creatorcontrib>Jeffrey, E.</creatorcontrib><creatorcontrib>Kelly, J.</creatorcontrib><creatorcontrib>Mutus, J. Y.</creatorcontrib><creatorcontrib>O'Malley, P. J. J.</creatorcontrib><creatorcontrib>Neill, C.</creatorcontrib><creatorcontrib>Roushan, P.</creatorcontrib><creatorcontrib>Sank, D.</creatorcontrib><creatorcontrib>Vainsencher, A.</creatorcontrib><creatorcontrib>Wenner, J.</creatorcontrib><creatorcontrib>White, T. C.</creatorcontrib><creatorcontrib>Cleland, A. N.</creatorcontrib><creatorcontrib>Martinis, John M.</creatorcontrib><title>Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits</title><title>Applied physics letters</title><description>Many superconducting qubits are highly sensitive to dielectric loss, making the fabrication of coherent quantum circuits challenging. To elucidate this issue, we characterize the interfaces and surfaces of superconducting coplanar waveguide resonators and study the associated microwave loss. We show that contamination induced by traditional qubit lift-off processing is particularly detrimental to quality factors without proper substrate cleaning, while roughness plays at most a small role. Aggressive surface treatment is shown to damage the crystalline substrate and degrade resonator quality. We also introduce methods to characterize and remove ultra-thin resist residue, providing a way to quantify and minimize remnant sources of loss on device surfaces.</description><subject>Applied physics</subject><subject>Circuits</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Coplanar waveguides</subject><subject>Dielectric loss</subject><subject>DIELECTRIC MATERIALS</subject><subject>MICROSTRUCTURE</subject><subject>MICROWAVE EQUIPMENT</subject><subject>QUBITS</subject><subject>Qubits (quantum computing)</subject><subject>RESONATORS</subject><subject>Substrates</subject><subject>SUPERCONDUCTING DEVICES</subject><subject>Superconductivity</subject><subject>Surface treatment</subject><subject>SURFACE TREATMENTS</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNkD9PwzAQxS0EEqUw8A0iMTGk-OzEiUdU8U-qxNLdci4X6orare0M8OkJLQPT6el-d3rvMXYLfAFcyQdYVK2WQjdnbAa8aUoJ0J6zGedclkrXcMmuUtpOshZSzth2ubHRYqbovm12wRfW90WkfsSjCkOxcxjDYLvo8EiUzk9b6oueMGwokkcqnC_SuKeIwR9P_UdxGK3P465AF3F0OV2zi8F-Jrr5m3O2fn5aL1_L1fvL2_JxVaJsVS7rahA1ICmosKugrbRUVlDfTQm0gq4fWttUyCVaTpY3naS61pUapCawjZyzu9PbkLIzCV0m3Ey2PGE2QkhoOf9H7WM4jJSy2YYx-smXESBU3UCr24m6P1FTAylFGsw-up2NXwa4-e3bgPnrW_4A4KNzdQ</recordid><startdate>20140811</startdate><enddate>20140811</enddate><creator>Quintana, C. M.</creator><creator>Megrant, A.</creator><creator>Chen, Z.</creator><creator>Dunsworth, A.</creator><creator>Chiaro, B.</creator><creator>Barends, R.</creator><creator>Campbell, B.</creator><creator>Chen, Yu</creator><creator>Hoi, I.-C.</creator><creator>Jeffrey, E.</creator><creator>Kelly, J.</creator><creator>Mutus, J. Y.</creator><creator>O'Malley, P. J. J.</creator><creator>Neill, C.</creator><creator>Roushan, P.</creator><creator>Sank, D.</creator><creator>Vainsencher, A.</creator><creator>Wenner, J.</creator><creator>White, T. C.</creator><creator>Cleland, A. N.</creator><creator>Martinis, John M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140811</creationdate><title>Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits</title><author>Quintana, C. M. ; Megrant, A. ; Chen, Z. ; Dunsworth, A. ; Chiaro, B. ; Barends, R. ; Campbell, B. ; Chen, Yu ; Hoi, I.-C. ; Jeffrey, E. ; Kelly, J. ; Mutus, J. Y. ; O'Malley, P. J. J. ; Neill, C. ; Roushan, P. ; Sank, D. ; Vainsencher, A. ; Wenner, J. ; White, T. C. ; Cleland, A. N. ; Martinis, John M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-54f251ce614cb4184936a2edb003961bdf8a74c03ca0ea07b3e55946f39e1a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>Circuits</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Coplanar waveguides</topic><topic>Dielectric loss</topic><topic>DIELECTRIC MATERIALS</topic><topic>MICROSTRUCTURE</topic><topic>MICROWAVE EQUIPMENT</topic><topic>QUBITS</topic><topic>Qubits (quantum computing)</topic><topic>RESONATORS</topic><topic>Substrates</topic><topic>SUPERCONDUCTING DEVICES</topic><topic>Superconductivity</topic><topic>Surface treatment</topic><topic>SURFACE TREATMENTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quintana, C. M.</creatorcontrib><creatorcontrib>Megrant, A.</creatorcontrib><creatorcontrib>Chen, Z.</creatorcontrib><creatorcontrib>Dunsworth, A.</creatorcontrib><creatorcontrib>Chiaro, B.</creatorcontrib><creatorcontrib>Barends, R.</creatorcontrib><creatorcontrib>Campbell, B.</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Hoi, I.-C.</creatorcontrib><creatorcontrib>Jeffrey, E.</creatorcontrib><creatorcontrib>Kelly, J.</creatorcontrib><creatorcontrib>Mutus, J. Y.</creatorcontrib><creatorcontrib>O'Malley, P. J. J.</creatorcontrib><creatorcontrib>Neill, C.</creatorcontrib><creatorcontrib>Roushan, P.</creatorcontrib><creatorcontrib>Sank, D.</creatorcontrib><creatorcontrib>Vainsencher, A.</creatorcontrib><creatorcontrib>Wenner, J.</creatorcontrib><creatorcontrib>White, T. C.</creatorcontrib><creatorcontrib>Cleland, A. N.</creatorcontrib><creatorcontrib>Martinis, John M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quintana, C. M.</au><au>Megrant, A.</au><au>Chen, Z.</au><au>Dunsworth, A.</au><au>Chiaro, B.</au><au>Barends, R.</au><au>Campbell, B.</au><au>Chen, Yu</au><au>Hoi, I.-C.</au><au>Jeffrey, E.</au><au>Kelly, J.</au><au>Mutus, J. Y.</au><au>O'Malley, P. J. J.</au><au>Neill, C.</au><au>Roushan, P.</au><au>Sank, D.</au><au>Vainsencher, A.</au><au>Wenner, J.</au><au>White, T. C.</au><au>Cleland, A. N.</au><au>Martinis, John M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits</atitle><jtitle>Applied physics letters</jtitle><date>2014-08-11</date><risdate>2014</risdate><volume>105</volume><issue>6</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Many superconducting qubits are highly sensitive to dielectric loss, making the fabrication of coherent quantum circuits challenging. To elucidate this issue, we characterize the interfaces and surfaces of superconducting coplanar waveguide resonators and study the associated microwave loss. We show that contamination induced by traditional qubit lift-off processing is particularly detrimental to quality factors without proper substrate cleaning, while roughness plays at most a small role. Aggressive surface treatment is shown to damage the crystalline substrate and degrade resonator quality. We also introduce methods to characterize and remove ultra-thin resist residue, providing a way to quantify and minimize remnant sources of loss on device surfaces.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4893297</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2014-08, Vol.105 (6)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_22318007
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Circuits
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Coplanar waveguides
Dielectric loss
DIELECTRIC MATERIALS
MICROSTRUCTURE
MICROWAVE EQUIPMENT
QUBITS
Qubits (quantum computing)
RESONATORS
Substrates
SUPERCONDUCTING DEVICES
Superconductivity
Surface treatment
SURFACE TREATMENTS
title Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T09%3A15%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20reduction%20of%20microfabrication-induced%20decoherence%20in%20superconducting%20quantum%20circuits&rft.jtitle=Applied%20physics%20letters&rft.au=Quintana,%20C.%20M.&rft.date=2014-08-11&rft.volume=105&rft.issue=6&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4893297&rft_dat=%3Cproquest_osti_%3E2126571898%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126571898&rft_id=info:pmid/&rfr_iscdi=true