Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits
Many superconducting qubits are highly sensitive to dielectric loss, making the fabrication of coherent quantum circuits challenging. To elucidate this issue, we characterize the interfaces and surfaces of superconducting coplanar waveguide resonators and study the associated microwave loss. We show...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2014-08, Vol.105 (6) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 105 |
creator | Quintana, C. M. Megrant, A. Chen, Z. Dunsworth, A. Chiaro, B. Barends, R. Campbell, B. Chen, Yu Hoi, I.-C. Jeffrey, E. Kelly, J. Mutus, J. Y. O'Malley, P. J. J. Neill, C. Roushan, P. Sank, D. Vainsencher, A. Wenner, J. White, T. C. Cleland, A. N. Martinis, John M. |
description | Many superconducting qubits are highly sensitive to dielectric loss, making the fabrication of coherent quantum circuits challenging. To elucidate this issue, we characterize the interfaces and surfaces of superconducting coplanar waveguide resonators and study the associated microwave loss. We show that contamination induced by traditional qubit lift-off processing is particularly detrimental to quality factors without proper substrate cleaning, while roughness plays at most a small role. Aggressive surface treatment is shown to damage the crystalline substrate and degrade resonator quality. We also introduce methods to characterize and remove ultra-thin resist residue, providing a way to quantify and minimize remnant sources of loss on device surfaces. |
doi_str_mv | 10.1063/1.4893297 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22318007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126571898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-54f251ce614cb4184936a2edb003961bdf8a74c03ca0ea07b3e55946f39e1a73</originalsourceid><addsrcrecordid>eNpNkD9PwzAQxS0EEqUw8A0iMTGk-OzEiUdU8U-qxNLdci4X6orare0M8OkJLQPT6el-d3rvMXYLfAFcyQdYVK2WQjdnbAa8aUoJ0J6zGedclkrXcMmuUtpOshZSzth2ubHRYqbovm12wRfW90WkfsSjCkOxcxjDYLvo8EiUzk9b6oueMGwokkcqnC_SuKeIwR9P_UdxGK3P465AF3F0OV2zi8F-Jrr5m3O2fn5aL1_L1fvL2_JxVaJsVS7rahA1ICmosKugrbRUVlDfTQm0gq4fWttUyCVaTpY3naS61pUapCawjZyzu9PbkLIzCV0m3Ey2PGE2QkhoOf9H7WM4jJSy2YYx-smXESBU3UCr24m6P1FTAylFGsw-up2NXwa4-e3bgPnrW_4A4KNzdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126571898</pqid></control><display><type>article</type><title>Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Quintana, C. M. ; Megrant, A. ; Chen, Z. ; Dunsworth, A. ; Chiaro, B. ; Barends, R. ; Campbell, B. ; Chen, Yu ; Hoi, I.-C. ; Jeffrey, E. ; Kelly, J. ; Mutus, J. Y. ; O'Malley, P. J. J. ; Neill, C. ; Roushan, P. ; Sank, D. ; Vainsencher, A. ; Wenner, J. ; White, T. C. ; Cleland, A. N. ; Martinis, John M.</creator><creatorcontrib>Quintana, C. M. ; Megrant, A. ; Chen, Z. ; Dunsworth, A. ; Chiaro, B. ; Barends, R. ; Campbell, B. ; Chen, Yu ; Hoi, I.-C. ; Jeffrey, E. ; Kelly, J. ; Mutus, J. Y. ; O'Malley, P. J. J. ; Neill, C. ; Roushan, P. ; Sank, D. ; Vainsencher, A. ; Wenner, J. ; White, T. C. ; Cleland, A. N. ; Martinis, John M.</creatorcontrib><description>Many superconducting qubits are highly sensitive to dielectric loss, making the fabrication of coherent quantum circuits challenging. To elucidate this issue, we characterize the interfaces and surfaces of superconducting coplanar waveguide resonators and study the associated microwave loss. We show that contamination induced by traditional qubit lift-off processing is particularly detrimental to quality factors without proper substrate cleaning, while roughness plays at most a small role. Aggressive surface treatment is shown to damage the crystalline substrate and degrade resonator quality. We also introduce methods to characterize and remove ultra-thin resist residue, providing a way to quantify and minimize remnant sources of loss on device surfaces.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4893297</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Circuits ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Coplanar waveguides ; Dielectric loss ; DIELECTRIC MATERIALS ; MICROSTRUCTURE ; MICROWAVE EQUIPMENT ; QUBITS ; Qubits (quantum computing) ; RESONATORS ; Substrates ; SUPERCONDUCTING DEVICES ; Superconductivity ; Surface treatment ; SURFACE TREATMENTS</subject><ispartof>Applied physics letters, 2014-08, Vol.105 (6)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-54f251ce614cb4184936a2edb003961bdf8a74c03ca0ea07b3e55946f39e1a73</citedby><cites>FETCH-LOGICAL-c386t-54f251ce614cb4184936a2edb003961bdf8a74c03ca0ea07b3e55946f39e1a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22318007$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Quintana, C. M.</creatorcontrib><creatorcontrib>Megrant, A.</creatorcontrib><creatorcontrib>Chen, Z.</creatorcontrib><creatorcontrib>Dunsworth, A.</creatorcontrib><creatorcontrib>Chiaro, B.</creatorcontrib><creatorcontrib>Barends, R.</creatorcontrib><creatorcontrib>Campbell, B.</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Hoi, I.-C.</creatorcontrib><creatorcontrib>Jeffrey, E.</creatorcontrib><creatorcontrib>Kelly, J.</creatorcontrib><creatorcontrib>Mutus, J. Y.</creatorcontrib><creatorcontrib>O'Malley, P. J. J.</creatorcontrib><creatorcontrib>Neill, C.</creatorcontrib><creatorcontrib>Roushan, P.</creatorcontrib><creatorcontrib>Sank, D.</creatorcontrib><creatorcontrib>Vainsencher, A.</creatorcontrib><creatorcontrib>Wenner, J.</creatorcontrib><creatorcontrib>White, T. C.</creatorcontrib><creatorcontrib>Cleland, A. N.</creatorcontrib><creatorcontrib>Martinis, John M.</creatorcontrib><title>Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits</title><title>Applied physics letters</title><description>Many superconducting qubits are highly sensitive to dielectric loss, making the fabrication of coherent quantum circuits challenging. To elucidate this issue, we characterize the interfaces and surfaces of superconducting coplanar waveguide resonators and study the associated microwave loss. We show that contamination induced by traditional qubit lift-off processing is particularly detrimental to quality factors without proper substrate cleaning, while roughness plays at most a small role. Aggressive surface treatment is shown to damage the crystalline substrate and degrade resonator quality. We also introduce methods to characterize and remove ultra-thin resist residue, providing a way to quantify and minimize remnant sources of loss on device surfaces.</description><subject>Applied physics</subject><subject>Circuits</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Coplanar waveguides</subject><subject>Dielectric loss</subject><subject>DIELECTRIC MATERIALS</subject><subject>MICROSTRUCTURE</subject><subject>MICROWAVE EQUIPMENT</subject><subject>QUBITS</subject><subject>Qubits (quantum computing)</subject><subject>RESONATORS</subject><subject>Substrates</subject><subject>SUPERCONDUCTING DEVICES</subject><subject>Superconductivity</subject><subject>Surface treatment</subject><subject>SURFACE TREATMENTS</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNkD9PwzAQxS0EEqUw8A0iMTGk-OzEiUdU8U-qxNLdci4X6orare0M8OkJLQPT6el-d3rvMXYLfAFcyQdYVK2WQjdnbAa8aUoJ0J6zGedclkrXcMmuUtpOshZSzth2ubHRYqbovm12wRfW90WkfsSjCkOxcxjDYLvo8EiUzk9b6oueMGwokkcqnC_SuKeIwR9P_UdxGK3P465AF3F0OV2zi8F-Jrr5m3O2fn5aL1_L1fvL2_JxVaJsVS7rahA1ICmosKugrbRUVlDfTQm0gq4fWttUyCVaTpY3naS61pUapCawjZyzu9PbkLIzCV0m3Ey2PGE2QkhoOf9H7WM4jJSy2YYx-smXESBU3UCr24m6P1FTAylFGsw-up2NXwa4-e3bgPnrW_4A4KNzdQ</recordid><startdate>20140811</startdate><enddate>20140811</enddate><creator>Quintana, C. M.</creator><creator>Megrant, A.</creator><creator>Chen, Z.</creator><creator>Dunsworth, A.</creator><creator>Chiaro, B.</creator><creator>Barends, R.</creator><creator>Campbell, B.</creator><creator>Chen, Yu</creator><creator>Hoi, I.-C.</creator><creator>Jeffrey, E.</creator><creator>Kelly, J.</creator><creator>Mutus, J. Y.</creator><creator>O'Malley, P. J. J.</creator><creator>Neill, C.</creator><creator>Roushan, P.</creator><creator>Sank, D.</creator><creator>Vainsencher, A.</creator><creator>Wenner, J.</creator><creator>White, T. C.</creator><creator>Cleland, A. N.</creator><creator>Martinis, John M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140811</creationdate><title>Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits</title><author>Quintana, C. M. ; Megrant, A. ; Chen, Z. ; Dunsworth, A. ; Chiaro, B. ; Barends, R. ; Campbell, B. ; Chen, Yu ; Hoi, I.-C. ; Jeffrey, E. ; Kelly, J. ; Mutus, J. Y. ; O'Malley, P. J. J. ; Neill, C. ; Roushan, P. ; Sank, D. ; Vainsencher, A. ; Wenner, J. ; White, T. C. ; Cleland, A. N. ; Martinis, John M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-54f251ce614cb4184936a2edb003961bdf8a74c03ca0ea07b3e55946f39e1a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>Circuits</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Coplanar waveguides</topic><topic>Dielectric loss</topic><topic>DIELECTRIC MATERIALS</topic><topic>MICROSTRUCTURE</topic><topic>MICROWAVE EQUIPMENT</topic><topic>QUBITS</topic><topic>Qubits (quantum computing)</topic><topic>RESONATORS</topic><topic>Substrates</topic><topic>SUPERCONDUCTING DEVICES</topic><topic>Superconductivity</topic><topic>Surface treatment</topic><topic>SURFACE TREATMENTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quintana, C. M.</creatorcontrib><creatorcontrib>Megrant, A.</creatorcontrib><creatorcontrib>Chen, Z.</creatorcontrib><creatorcontrib>Dunsworth, A.</creatorcontrib><creatorcontrib>Chiaro, B.</creatorcontrib><creatorcontrib>Barends, R.</creatorcontrib><creatorcontrib>Campbell, B.</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Hoi, I.-C.</creatorcontrib><creatorcontrib>Jeffrey, E.</creatorcontrib><creatorcontrib>Kelly, J.</creatorcontrib><creatorcontrib>Mutus, J. Y.</creatorcontrib><creatorcontrib>O'Malley, P. J. J.</creatorcontrib><creatorcontrib>Neill, C.</creatorcontrib><creatorcontrib>Roushan, P.</creatorcontrib><creatorcontrib>Sank, D.</creatorcontrib><creatorcontrib>Vainsencher, A.</creatorcontrib><creatorcontrib>Wenner, J.</creatorcontrib><creatorcontrib>White, T. C.</creatorcontrib><creatorcontrib>Cleland, A. N.</creatorcontrib><creatorcontrib>Martinis, John M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quintana, C. M.</au><au>Megrant, A.</au><au>Chen, Z.</au><au>Dunsworth, A.</au><au>Chiaro, B.</au><au>Barends, R.</au><au>Campbell, B.</au><au>Chen, Yu</au><au>Hoi, I.-C.</au><au>Jeffrey, E.</au><au>Kelly, J.</au><au>Mutus, J. Y.</au><au>O'Malley, P. J. J.</au><au>Neill, C.</au><au>Roushan, P.</au><au>Sank, D.</au><au>Vainsencher, A.</au><au>Wenner, J.</au><au>White, T. C.</au><au>Cleland, A. N.</au><au>Martinis, John M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits</atitle><jtitle>Applied physics letters</jtitle><date>2014-08-11</date><risdate>2014</risdate><volume>105</volume><issue>6</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Many superconducting qubits are highly sensitive to dielectric loss, making the fabrication of coherent quantum circuits challenging. To elucidate this issue, we characterize the interfaces and surfaces of superconducting coplanar waveguide resonators and study the associated microwave loss. We show that contamination induced by traditional qubit lift-off processing is particularly detrimental to quality factors without proper substrate cleaning, while roughness plays at most a small role. Aggressive surface treatment is shown to damage the crystalline substrate and degrade resonator quality. We also introduce methods to characterize and remove ultra-thin resist residue, providing a way to quantify and minimize remnant sources of loss on device surfaces.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4893297</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2014-08, Vol.105 (6) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_22318007 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Circuits CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Coplanar waveguides Dielectric loss DIELECTRIC MATERIALS MICROSTRUCTURE MICROWAVE EQUIPMENT QUBITS Qubits (quantum computing) RESONATORS Substrates SUPERCONDUCTING DEVICES Superconductivity Surface treatment SURFACE TREATMENTS |
title | Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T09%3A15%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20reduction%20of%20microfabrication-induced%20decoherence%20in%20superconducting%20quantum%20circuits&rft.jtitle=Applied%20physics%20letters&rft.au=Quintana,%20C.%20M.&rft.date=2014-08-11&rft.volume=105&rft.issue=6&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4893297&rft_dat=%3Cproquest_osti_%3E2126571898%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126571898&rft_id=info:pmid/&rfr_iscdi=true |