Effects of ZrO{sub 2} doping on HfO{sub 2} resistive switching memory characteristics

A resistive switching (RS) random access memory device with ZrO{sub 2}-doped HfO{sub 2} exhibits better RS performance than that with pure HfO{sub 2}. In particular, I{sub res}, V{sub res}, and V{sub set} are reduced by approximately 58%, 38%, and 39%, respectively, when HfO{sub 2} is doped with ZrO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2014-08, Vol.105 (7)
Hauptverfasser: Ryu, Seung Wook, Kwac, Jungsuk, Nishi, Yoshio, Cho, Seongjae, Park, Joonsuk, Kim, Hyeong Joon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A resistive switching (RS) random access memory device with ZrO{sub 2}-doped HfO{sub 2} exhibits better RS performance than that with pure HfO{sub 2}. In particular, I{sub res}, V{sub res}, and V{sub set} are reduced by approximately 58%, 38%, and 39%, respectively, when HfO{sub 2} is doped with ZrO{sub 2} (9 at. %). In addition, the ZrO{sub 2} doping in HfO{sub 2} makes the distribution of most parameters steeper. Transmission electron microscopy (TEM) analysis reveals that the deposited zirconium-doped hafnium oxide (HZO) (9 at. %) is polycrystalline. Elemental mapping results by scanning TEM–energy dispersive spectroscopy also prove that ZrO{sub 2} is uniformly distributed in the HZO (9 at. %) film. The possible mechanism for the improvement in the RS characteristics is also suggested on the basis of the X-ray photoelectron spectroscopy results and filamentary RS mechanism. These results suggest that the ZrO{sub 2} doping into HfO{sub 2} likely not only will reduce power consumption but also will improve cyclic endurance by controlling the nonstoichiometric phase.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4893568