Carrier transfer from InAs quantum dots to ErAs metal nanoparticles
Erbium arsenide (ErAs) is a semi-metallic material that self-assembles into nanoparticles when grown in GaAs via molecular beam epitaxy. We use steady-state and time-resolved photoluminescence to examine the mechanism of carrier transfer between indium arsenide (InAs) quantum dots and ErAs nanoparti...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2014-09, Vol.105 (10) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Erbium arsenide (ErAs) is a semi-metallic material that self-assembles into nanoparticles when grown in GaAs via molecular beam epitaxy. We use steady-state and time-resolved photoluminescence to examine the mechanism of carrier transfer between indium arsenide (InAs) quantum dots and ErAs nanoparticles in a GaAs host. We probe the electronic structure of the ErAs metal nanoparticles (MNPs) and the optoelectronic properties of the nanocomposite and show that the carrier transfer rates are independent of pump intensity. This result suggests that the ErAs MNPs have a continuous density of states and effectively act as traps. The absence of a temperature dependence tells us that carrier transfer from the InAs quantum dots to ErAs MNPs is not phonon assisted. We show that the measured photoluminescence decay rates are consistent with a carrier tunneling model. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4895519 |