Decay Rates to Equilibrium for Nonlinear Plate Equations with Degenerate, Geometrically-Constrained Damping

We analyze the convergence to equilibrium of solutions to the nonlinear Berger plate evolution equation in the presence of localized interior damping (also referred to as geometrically constrained damping ). Utilizing the results in (Geredeli et al. in J. Differ. Equ. 254:1193–1229, 2013 ), we have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics & optimization 2013-12, Vol.68 (3), p.361-390
Hauptverfasser: Geredeli, Pelin G., Webster, Justin T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze the convergence to equilibrium of solutions to the nonlinear Berger plate evolution equation in the presence of localized interior damping (also referred to as geometrically constrained damping ). Utilizing the results in (Geredeli et al. in J. Differ. Equ. 254:1193–1229, 2013 ), we have that any trajectory converges to the set of stationary points . Employing standard assumptions from the theory of nonlinear unstable dynamics on the set , we obtain the rate of convergence to an equilibrium. The critical issue in the proof of convergence to equilibria is a unique continuation property (which we prove for the Berger evolution) that provides a gradient structure for the dynamics. We also consider the more involved von Karman evolution, and show that the same results hold assuming a unique continuation property for solutions, which is presently a challenging open problem.
ISSN:0095-4616
1432-0606
DOI:10.1007/s00245-013-9210-8