Stable laser–plasma accelerators at low densities
We report stable laser wakefield acceleration using 17–50 TW laser pulses interacting with 4 mm-long helium gas jet. The initial laser spot size was relatively large (28 μm) and the plasma densities were 0.48–2.0 × 1019 cm−3. High-quality 100–MeV electron beams were generated at the plasma density o...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2014-07, Vol.116 (4) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report stable laser wakefield acceleration using 17–50 TW laser pulses interacting with 4 mm-long helium gas jet. The initial laser spot size was relatively large (28 μm) and the plasma densities were 0.48–2.0 × 1019 cm−3. High-quality 100–MeV electron beams were generated at the plasma density of 7.5 × 1018 cm−3, at which the beam parameters (pointing angle, energy spectrum, charge, and divergence angle) were measured and stabilized. At higher densities, filamentation instability of the laser-plasma interaction was observed and it has led to multiple wakefield accelerated electron beams. The experimental results are supported by 2D particle-in-cell simulations. The achievement presented here is an important step toward the use of laser-driven accelerators in real applications. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4891987 |