Stable laser–plasma accelerators at low densities

We report stable laser wakefield acceleration using 17–50 TW laser pulses interacting with 4 mm-long helium gas jet. The initial laser spot size was relatively large (28 μm) and the plasma densities were 0.48–2.0 × 1019 cm−3. High-quality 100–MeV electron beams were generated at the plasma density o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2014-07, Vol.116 (4)
Hauptverfasser: Li, Song, Hafz, Nasr A. M., Mirzaie, Mohammad, Ge, Xulei, Sokollik, Thomas, Chen, Min, Sheng, Zhengming, Zhang, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report stable laser wakefield acceleration using 17–50 TW laser pulses interacting with 4 mm-long helium gas jet. The initial laser spot size was relatively large (28 μm) and the plasma densities were 0.48–2.0 × 1019 cm−3. High-quality 100–MeV electron beams were generated at the plasma density of 7.5 × 1018 cm−3, at which the beam parameters (pointing angle, energy spectrum, charge, and divergence angle) were measured and stabilized. At higher densities, filamentation instability of the laser-plasma interaction was observed and it has led to multiple wakefield accelerated electron beams. The experimental results are supported by 2D particle-in-cell simulations. The achievement presented here is an important step toward the use of laser-driven accelerators in real applications.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4891987