Gibbs states on random configurations
Gibbs states of a spin system with the single-spin space $S=\mathbb {R}^{m}$S=Rm and unbounded pair interactions are studied. The spins are attached to the points of a realization γ of a random point process in $\mathbb {R} ^{n}$Rn. Under certain conditions on the model parameters we prove that, for...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2014-08, Vol.55 (8), p.1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gibbs states of a spin system with the single-spin space $S=\mathbb {R}^{m}$S=Rm and unbounded pair interactions are studied. The spins are attached to the points of a realization γ of a random point process in $\mathbb {R} ^{n}$Rn. Under certain conditions on the model parameters we prove that, for almost all γ, the set $\mathcal {G}(S^{\gamma })$G(Sγ) of all Gibbs states is nonempty and its elements have support properties, explicitly described in the paper. We also show the existence of measurable selections $\gamma \mapsto \nu _{\gamma }\in \mathcal {G}(S^{\gamma })$γ↦νγ∈G(Sγ) (random Gibbs measures) and derive the corresponding averaged moment estimates. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.4891992 |