Exact propagating nonlinear singular disturbances in strongly coupled dusty plasmas

The dynamical response of the strongly coupled dusty plasma medium has recently been described by utilizing the Generalized Hydrodynamic (GHD) model equations. The GHD equations capture the visco-elastic properties of the medium and have been successful in predicting a host of phenomena (e.g., exist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2014-08, Vol.21 (8)
Hauptverfasser: Das, Amita, Tiwari, Sanat Kumar, Kaw, Predhiman, Sen, Abhijit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dynamical response of the strongly coupled dusty plasma medium has recently been described by utilizing the Generalized Hydrodynamic (GHD) model equations. The GHD equations capture the visco-elastic properties of the medium and have been successful in predicting a host of phenomena (e.g., existence of novel transverse shear waves in the fluid medium, modification of longitudinal wave dispersion by elastic effects, etc.) which have found experimental confirmation. In this paper, the nonlinear longitudinal response of the medium governed by GHD equations in strong coupling limit is discussed analytically. The structure of the equations rules out the balance between dispersion and nonlinearity, thereby, forbidding soliton formation. However, a host of new varieties of nonlinear solutions are found to exist, which have singular spatial profiles and yet have conservative properties. For instance, existence of novel conservative shock structures with zero strength is demonstrated, waves whose breaking produces no dissipation in the medium are observed, propagating solutions which produce cusp like singularities can exist and so on. It is suggested that simulations and experiments should look for these novel nonlinear structures in the large amplitude strong coupling limit of longitudinal disturbances in dusty plasmas.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.4892522