Thermal effects and space-charge limited transition in crossed-field devices
A fully kinetic model for the electron flow in a crossed field device is derived and used to determine the system stationary states. It is found that for low injection temperatures, there is a simultaneous presence of distinct stationary solutions and an abrupt transition between accelerating and sp...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2014-08, Vol.21 (8) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A fully kinetic model for the electron flow in a crossed field device is derived and used to determine the system stationary states. It is found that for low injection temperatures, there is a simultaneous presence of distinct stationary solutions and an abrupt transition between accelerating and space-charge limited regimes. On the other hand, for high injection temperatures, there is only a single stationary solution branch and the change between the regimes becomes continuous. For intermediate temperatures, it is then identified a critical point that separates the abrupt and continuous behaviors. It is also investigated how intrinsic space-charge oscillations may drive stationary states unstable in certain parameter regimes. The results are verified with N-particle self-consistent simulations. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.4893313 |