Epitaxial stabilization of ultra thin films of electron doped manganites

Ultra-thin films of the electron doped manganite La0.8Ce0.2MnO3 were grown in a layer-by-layer growth mode on SrTiO3 (001) substrates by pulsed laser interval deposition. High structural quality and surface morphology were confirmed by a combination of synchrotron based x-ray diffraction and atomic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2014-05, Vol.104 (20)
Hauptverfasser: Middey, S., Kareev, M., Meyers, D., Liu, X., Cao, Y., Tripathi, S., Yazici, D., Maple, M. B., Ryan, P. J., Freeland, J. W., Chakhalian, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultra-thin films of the electron doped manganite La0.8Ce0.2MnO3 were grown in a layer-by-layer growth mode on SrTiO3 (001) substrates by pulsed laser interval deposition. High structural quality and surface morphology were confirmed by a combination of synchrotron based x-ray diffraction and atomic force microscopy. Resonant X-ray absorption spectroscopy measurements confirm the presence of Ce4+ and Mn2+ ions. In addition, the electron doping signature was corroborated by Hall effect measurements. All grown films show a ferromagnetic ground state as revealed by both dc magnetization and x-ray magnetic circular dichroism measurements and remain insulating contrary to earlier reports of a metal-insulator transition. Our results hint at the possibility of electron-hole asymmetry in the colossal magnetoresistive manganite phase diagram akin to the high-Tc cuprates.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4879456