Efficacy of a novel chelator BPCBG for removing uranium and protecting against uranium-induced renal cell damage in rats and HK-2 cells

Chelation therapy is a known effective method to increase the excretion of U(VI) from the body. Until now, no any uranium chelator has been approved for emergency medical use worldwide. The present study aimed to evaluate the efficacy of new ligand BPCBG containing two catechol groups and two aminoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicology and applied pharmacology 2013-05, Vol.269 (1), p.17-24
Hauptverfasser: Bao, Yizhong, Wang, Dan, Li, Zhiming, Hu, Yuxing, Xu, Aihong, Wang, Quanrui, Shao, Chunlin, Chen, Honghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chelation therapy is a known effective method to increase the excretion of U(VI) from the body. Until now, no any uranium chelator has been approved for emergency medical use worldwide. The present study aimed to evaluate the efficacy of new ligand BPCBG containing two catechol groups and two aminocarboxylic acid groups in decorporation of U(VI) and protection against acute U(VI) nephrotoxicity in rats, and further explored the detoxification mechanism of BPCBG for U(VI)-induced nephrotoxicity in HK-2 cells with comparison to DTPA-CaNa3. Chelating agents were administered at various times before or after injections of U(VI) in rats. The U(VI) levels in urine, kidneys and femurs were measured 24h after U(VI) injections. Histopathological changes in the kidney and serum urea and creatinine and urine protein were examined. After treatment of U(VI)-exposed HK-2 cells with chelating agent, the intracellular U(VI) contents, formation of micronuclei, lactate dehydrogenase (LDH) activity and production of reactive oxygen species (ROS) were assessed. It was found that prompt, advanced or delayed injections of BPCBG effectively increased 24h-urinary U(VI) excretion and decreased the levels of U(VI) in kidney and bone. Meanwhile, BPCBG injection obviously reduced the severity of the U(VI)-induced histological alterations in the kidney, which was in parallel with the amelioration noted in serum indicators, urea and creatinine, and urine protein of U(VI) nephrotoxicity. In U(VI)-exposed HK-2 cells, immediate and delayed treatment with BPCBG significantly decreased the formation of micronuclei and LDH release by inhibiting the cellular U(VI) intake, promoting the intracellular U(VI) release and inhibiting the production of intracellular ROS. Our data suggest that BPCBG is a novel bi-functional U(VI) decorporation agent with a better efficacy than DTPA-CaNa3. ► BPCBG accelerated the urine U(VI) excretion and reduced the tissues U(VI) in rats. ► BPCBG can effectively protect against the U(VI)-induced nephrotoxicity in rats. ► BPCBG increased the U(VI) release and reduced the U(VI) uptake in HK-2 cells. ► BPCBG decreased the U(VI)-induced MN formation and LDH release in HK-2 cells. ► BPCBG eliminated the U(VI)-induced intracellular ROS in HK-2 cells.
ISSN:0041-008X
1096-0333
DOI:10.1016/j.taap.2013.02.010