Long-range superconducting proximity effect in polycrystalline Co nanowires
We report experimental evidence of a long-range superconducting proximity effect in polycrystalline Co nanowires in contact with a superconducting W-based floating electrode (inducer). For electrical resistance measurements, voltage leads were connected to the Co nanowire on both sides of the superc...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2014-02, Vol.104 (5) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report experimental evidence of a long-range superconducting proximity effect in polycrystalline Co nanowires in contact with a superconducting W-based floating electrode (inducer). For electrical resistance measurements, voltage leads were connected to the Co nanowire on both sides of the superconducting inducer at a distance of 7.2 μm. We observed a 28% reduction of the nanowire resistance when sweeping the temperature below the inducer's transition temperature Tc = 5.2 K. Our analysis of the resistance data shows that the superconducting proximity length in polycrystalline Co is as large as 1 μm at 2.4 K, attesting to a long-range proximity effect. Moreover, this long-range proximity effect is insusceptible to magnetic fields up to 11 T, which is indicative of spin-triplet pairing. Our results provide evidence that magnetic inhomogeneity of the ferromagnet enlarges the spatial extend of the spin-triplet superconducting proximity effect. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4863980 |