The Verwey transition in nanostructured magnetite produced by a combination of chimie douce and spark plasma sintering
Magnetite nanoparticles about 10 nm sized were synthesized by the polyol method. Zero-field-cooled (ZFC)-FC measurements showed a blocking temperature ∼170 K and the absence of the Verwey transition. They were subsequently consolidated by spark plasma sintering at 750 °C for 15 min, leading to a hig...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2014-05, Vol.115 (17) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magnetite nanoparticles about 10 nm sized were synthesized by the polyol method. Zero-field-cooled (ZFC)-FC measurements showed a blocking temperature ∼170 K and the absence of the Verwey transition. They were subsequently consolidated by spark plasma sintering at 750 °C for 15 min, leading to a high density (92% of the theoretical density), solid body, with grains in the 150 nm range. X-ray diffraction patterns exhibited a spinel single phase with cell parameters corresponding to the magnetite structure. Magnetic measurements showed a decrease of coercivity from 685 Oe (54.5 kA/m) at 118 K to 90 Oe (7.2 kA/m) at 139 K. ZFC measurements at 25 Oe presented a three-fold magnetization increase as temperature increased; a small transition between 116 and 117.5 K, followed by a larger one from 117.6 to 124 K. The first transition can be associated with a complex crystallographic transition and delocalization of Fe2+-Fe3+, while the second one can be attributed to spin reorientation due to the magnetocrystalline anisotropy constant (K1) change of sign as previously observed only in magnetite single crystals. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4863164 |