Fabrication and long-wavelength characterization of neat and chemically modified graphene

Graphene, a single- or several layer-thick carbon, attracts significant research activity because of its exceptional material properties. Graphene is a promising material for optoelectronic applications. Neat graphene demonstrates potential as a material for long wavelength photodetectors working at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kalugin, Nikolai G
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphene, a single- or several layer-thick carbon, attracts significant research activity because of its exceptional material properties. Graphene is a promising material for optoelectronic applications. Neat graphene demonstrates potential as a material for long wavelength photodetectors working at elevated temperatures. Chemical modification of graphene opens up many new applications of this material in electronics, in new composite materials, and in new catalysts for different chemical processes. Chemical vapor deposition-grown large-area graphene can be successfully modified with the creation of benzyne attachments. The investigation of microwave properties is an important part of graphene research. Two variants of near-field long wavelength microscopy were found efficient with graphene. Measurements with a probe formed by an electrically open end of a 4 GHz half-lambda parallel-strip transmission line resonator allow the implementation of an electrodynamic model of graphene microwave impedance. The results of near-field scanning superconducting quantum interference device (SQUID) RF microscopy of graphite and graphene at 200 MHz shed light on mechanisms of AC graphene response: screening currents induced in graphene by an external RF magnetic field tend to localize near structural defects.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4870207