Cumulative dose on fractional delivery of tomotherapy to periodically moving organ: A phantom QA suggestion

Abstract This study was conducted to evaluate the cumulative dosimetric error that occurs in both target and surrounding normal tissues when treating a moving target in multifractional treatment with tomotherapy. An experiment was devised to measure cumulative error in multifractional treatments del...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical dosimetry : official journal of the American Association of Medical Dosimetrists 2013, Vol.38 (4), p.359-365
Hauptverfasser: Shin, Eunhyuk, Ph.D, Han, Youngyih, Ph.D, Park, Hee-Chul, M.D., Ph.D, Sung Kim, Jin, Ph.D, Hwan Ahn, Sung, Ph.D, Suk Shin, Jung, M.Sc, Gyu Ju, Sang, Ph.D, Ho Choi, Doo, M.D., Ph.D, Lee, Jaiki, Ph.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract This study was conducted to evaluate the cumulative dosimetric error that occurs in both target and surrounding normal tissues when treating a moving target in multifractional treatment with tomotherapy. An experiment was devised to measure cumulative error in multifractional treatments delivered to a horseshoe-shaped clinical target volume (CTV) surrounding a cylinder shape of organ at risk (OAR). Treatments differed in jaw size (1.05 vs 2.5 cm), pitch (0.287 vs 0.660), and modulation factor (1.5 vs 2.5), and tumor motion characteristics differing in amplitude (1 to 3 cm), period (3 to 5 second), and regularity (sinusoidal vs irregular) were tested. Treatment plans were delivered to a moving phantom up to 5-times exposure. Dose distribution on central coronal plane from 1 to 5 times exposure was measured with GAFCHROMIC EBT film. Dose differences occurring across 1 to 5 times exposure of treatment and between treatment plans were evaluated by analyzing measurements of gamma index, gamma index histogram, histogram changes, and dose at the center of the OAR. The experiment showed dose distortion due to organ motion increased between multiexposure 1 to 3 times but plateaued and remained constant after 3-times exposure. In addition, although larger motion amplitude and a longer period of motion both increased dosimetric error, the dose at the OAR was more significantly affected by motion amplitude rather than motion period. Irregularity of motion did not contribute significantly to dosimetric error when compared with other motion parameters. Restriction of organ motion to have small amplitude and short motion period together with larger jaw size and small modulation factor (with small pitch) is effective in reducing dosimetric error. Pretreatment measurements for 3-times exposure of treatment to a moving phantom with patient-specific tumor motion would provide a good estimation of the delivered dose distribution.
ISSN:0958-3947
1873-4022
DOI:10.1016/j.meddos.2013.04.002