Nonradiative recombination mechanisms in InGaN/GaN-based light-emitting diodes investigated by temperature-dependent measurements

Two kinds of InGaN-based light-emitting diodes (LEDs) are investigated to understand the nonradiative carrier recombination processes. Various temperature-dependent measurements such as external quantum efficiency, current-voltage, and electroluminescence spectra are utilized from 50 to 300 K. Based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2014-04, Vol.104 (15)
Hauptverfasser: Han, Dong-Pyo, Zheng, Dong-Guang, Oh, Chan-Hyoung, Kim, Hyunsung, Shim, Jong-In, Shin, Dong-Soo, Kim, Kyu-Sang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two kinds of InGaN-based light-emitting diodes (LEDs) are investigated to understand the nonradiative carrier recombination processes. Various temperature-dependent measurements such as external quantum efficiency, current-voltage, and electroluminescence spectra are utilized from 50 to 300 K. Based on these experimental results, we analyze the dominant nonradiative recombination mechanism for each LED device. We also analyze the effect of the dominant nonradiative recombination mechanism on the efficiency droop. On the basis of correlation between the efficiency droop and nonradiative recombination mechanisms, we discuss an approach to reducing the efficiency droop for each LED device.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4871870