Chromatic instabilities in cesium-doped tungsten bronze nanoparticles

Nanoparticles of alkali-doped tungsten bronzes are an excellent near-infrared shielding material, but exhibit slight chromatic instabilities typically upon applications of strong ultra-violet light or heating in humid environment, which acts detrimentally to long-life commercial applications. Origin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2013-11, Vol.114 (19)
Hauptverfasser: Adachi, Kenji, Ota, Yosuke, Tanaka, Hiroyuki, Okada, Mika, Oshimura, Nobumitsu, Tofuku, Atsushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanoparticles of alkali-doped tungsten bronzes are an excellent near-infrared shielding material, but exhibit slight chromatic instabilities typically upon applications of strong ultra-violet light or heating in humid environment, which acts detrimentally to long-life commercial applications. Origin of the chromatic instabilities in cesium-doped tungsten bronze has been investigated, and it has been found that the coloration and bleaching processes comprised electronic exchanges which accelerate or depress the polaron excitation and the localized surface plasmon resonance. Coloration on UV illumination is evidenced by electron diffraction as due to the formation of HxWO3, which is considered to take place in the surface Cs-deficient WO3 region via the double charge injection mechanism. On the other hand, bleaching on heating in air and in humid environment is shown to accompany the extraction of Cs and electrons from Cs0.33WO3 by X-ray photoelectron spectroscopy and X-ray diffraction analysis and is concluded to be an oxidation of Cs0.33WO3 on the particle surface.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4831950