Anisotropy of effective electron masses in highly doped nonpolar GaN
The anisotropic effective electron masses in wurtzite GaN are determined by generalized infrared spectroscopic ellipsometry. Nonpolar (112¯0) oriented thin films allow accessing both effective masses, m⊥* and m∥*, by determining the screened plasma frequencies. A n-type doping range up to 1.7 × 1020...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2013-12, Vol.103 (23) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The anisotropic effective electron masses in wurtzite GaN are determined by generalized infrared spectroscopic ellipsometry. Nonpolar (112¯0) oriented thin films allow accessing both effective masses, m⊥* and m∥*, by determining the screened plasma frequencies. A n-type doping range up to 1.7 × 1020 cm−3 is investigated. The effective mass ratio m⊥*/m∥* is obtained with highest accuracy and is found to be 1.11 independent on electron concentration up to 1.2 × 1020 cm−3. For higher electron concentrations, the conduction band non-parabolicity is mirrored in changes. Absolute values for effective electron masses depend on additional input of carrier concentrations determined by Hall effect measurements. We obtain m⊥*=(0.239±0.004)m0 and m∥*=(0.216±0.003)m0 for the parabolic range of the GaN conduction band. Our data are indication of a parabolic GaN conduction band up to an energy of approximately 400 meV above the conduction band minimum. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4840055 |