Transport properties of individual C{sub 60}-molecules

Electrical and thermal transport properties of C{sub 60} molecules are investigated with density-functional-theory based calculations. These calculations suggest that the optimum contact geometry for an electrode terminated with a single-Au atom is through binding to one or two C-atoms of C{sub 60}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2013-12, Vol.139 (23)
Hauptverfasser: Géranton, G., Seiler, C., Evers, F., Center for Functional Nanostructures, Karlsruhe Institute of Technology, Campus South, D-76131 Karlsruhe, Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, Campus South, D-76128 Karlsruhe, Bagrets, A., Steinbuch Center for Supercomputing, Karlsruhe Institute of Technology, D-76128 Karlsruhe, Venkataraman, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page
container_title The Journal of chemical physics
container_volume 139
creator Géranton, G.
Seiler, C.
Evers, F.
Center for Functional Nanostructures, Karlsruhe Institute of Technology, Campus South, D-76131 Karlsruhe
Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, Campus South, D-76128 Karlsruhe
Bagrets, A.
Steinbuch Center for Supercomputing, Karlsruhe Institute of Technology, D-76128 Karlsruhe
Venkataraman, L.
description Electrical and thermal transport properties of C{sub 60} molecules are investigated with density-functional-theory based calculations. These calculations suggest that the optimum contact geometry for an electrode terminated with a single-Au atom is through binding to one or two C-atoms of C{sub 60} with a tendency to promote the  sp{sup 2}-hybridization into an  sp{sup 3}-type one. Transport in these junctions is primarily through an unoccupied molecular orbital that is partly hybridized with the Au, which results in splitting the degeneracy of the lowest unoccupied molecular orbital triplet. The transmission through these junctions, however, cannot be modeled by a single Lorentzian resonance, as our results show evidence of quantum interference between an occupied and an unoccupied orbital. The interference results in a suppression of conductance around the Fermi energy. Our numerical findings are readily analyzed analytically within a simple two-level model.
doi_str_mv 10.1063/1.4840535
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22253766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22253766</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_222537663</originalsourceid><addsrcrecordid>eNqNyj0OgjAYANDGaCL-DN6giXPxawsFZqLxAOwES4k1lZJ-xcV4dxcP4PSWR8iBQ8pByRNPszKDXOYLknAoK1aoCpYkARCcVQrUmmwQHwDAC5ElRDWhG3HyIdIp-MmEaA1SP1A79vZl-7lztH7jfKMKPuzpndGzM7gjq6FzaPY_t-R4OTf1lXmMtkVto9F37cfR6NgKIXJZKCX_W199vjqv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transport properties of individual C{sub 60}-molecules</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Géranton, G. ; Seiler, C. ; Evers, F. ; Center for Functional Nanostructures, Karlsruhe Institute of Technology, Campus South, D-76131 Karlsruhe ; Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, Campus South, D-76128 Karlsruhe ; Bagrets, A. ; Steinbuch Center for Supercomputing, Karlsruhe Institute of Technology, D-76128 Karlsruhe ; Venkataraman, L.</creator><creatorcontrib>Géranton, G. ; Seiler, C. ; Evers, F. ; Center for Functional Nanostructures, Karlsruhe Institute of Technology, Campus South, D-76131 Karlsruhe ; Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, Campus South, D-76128 Karlsruhe ; Bagrets, A. ; Steinbuch Center for Supercomputing, Karlsruhe Institute of Technology, D-76128 Karlsruhe ; Venkataraman, L.</creatorcontrib><description>Electrical and thermal transport properties of C{sub 60} molecules are investigated with density-functional-theory based calculations. These calculations suggest that the optimum contact geometry for an electrode terminated with a single-Au atom is through binding to one or two C-atoms of C{sub 60} with a tendency to promote the  sp{sup 2}-hybridization into an  sp{sup 3}-type one. Transport in these junctions is primarily through an unoccupied molecular orbital that is partly hybridized with the Au, which results in splitting the degeneracy of the lowest unoccupied molecular orbital triplet. The transmission through these junctions, however, cannot be modeled by a single Lorentzian resonance, as our results show evidence of quantum interference between an occupied and an unoccupied orbital. The interference results in a suppression of conductance around the Fermi energy. Our numerical findings are readily analyzed analytically within a simple two-level model.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4840535</identifier><language>eng</language><publisher>United States</publisher><subject>ATOMIC AND MOLECULAR PHYSICS ; DENSITY FUNCTIONAL METHOD ; FULLERENES ; HYBRIDIZATION ; MOLECULAR ORBITAL METHOD</subject><ispartof>The Journal of chemical physics, 2013-12, Vol.139 (23)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22253766$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Géranton, G.</creatorcontrib><creatorcontrib>Seiler, C.</creatorcontrib><creatorcontrib>Evers, F.</creatorcontrib><creatorcontrib>Center for Functional Nanostructures, Karlsruhe Institute of Technology, Campus South, D-76131 Karlsruhe</creatorcontrib><creatorcontrib>Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, Campus South, D-76128 Karlsruhe</creatorcontrib><creatorcontrib>Bagrets, A.</creatorcontrib><creatorcontrib>Steinbuch Center for Supercomputing, Karlsruhe Institute of Technology, D-76128 Karlsruhe</creatorcontrib><creatorcontrib>Venkataraman, L.</creatorcontrib><title>Transport properties of individual C{sub 60}-molecules</title><title>The Journal of chemical physics</title><description>Electrical and thermal transport properties of C{sub 60} molecules are investigated with density-functional-theory based calculations. These calculations suggest that the optimum contact geometry for an electrode terminated with a single-Au atom is through binding to one or two C-atoms of C{sub 60} with a tendency to promote the  sp{sup 2}-hybridization into an  sp{sup 3}-type one. Transport in these junctions is primarily through an unoccupied molecular orbital that is partly hybridized with the Au, which results in splitting the degeneracy of the lowest unoccupied molecular orbital triplet. The transmission through these junctions, however, cannot be modeled by a single Lorentzian resonance, as our results show evidence of quantum interference between an occupied and an unoccupied orbital. The interference results in a suppression of conductance around the Fermi energy. Our numerical findings are readily analyzed analytically within a simple two-level model.</description><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>FULLERENES</subject><subject>HYBRIDIZATION</subject><subject>MOLECULAR ORBITAL METHOD</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNyj0OgjAYANDGaCL-DN6giXPxawsFZqLxAOwES4k1lZJ-xcV4dxcP4PSWR8iBQ8pByRNPszKDXOYLknAoK1aoCpYkARCcVQrUmmwQHwDAC5ElRDWhG3HyIdIp-MmEaA1SP1A79vZl-7lztH7jfKMKPuzpndGzM7gjq6FzaPY_t-R4OTf1lXmMtkVto9F37cfR6NgKIXJZKCX_W199vjqv</recordid><startdate>20131221</startdate><enddate>20131221</enddate><creator>Géranton, G.</creator><creator>Seiler, C.</creator><creator>Evers, F.</creator><creator>Center for Functional Nanostructures, Karlsruhe Institute of Technology, Campus South, D-76131 Karlsruhe</creator><creator>Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, Campus South, D-76128 Karlsruhe</creator><creator>Bagrets, A.</creator><creator>Steinbuch Center for Supercomputing, Karlsruhe Institute of Technology, D-76128 Karlsruhe</creator><creator>Venkataraman, L.</creator><scope>OTOTI</scope></search><sort><creationdate>20131221</creationdate><title>Transport properties of individual C{sub 60}-molecules</title><author>Géranton, G. ; Seiler, C. ; Evers, F. ; Center for Functional Nanostructures, Karlsruhe Institute of Technology, Campus South, D-76131 Karlsruhe ; Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, Campus South, D-76128 Karlsruhe ; Bagrets, A. ; Steinbuch Center for Supercomputing, Karlsruhe Institute of Technology, D-76128 Karlsruhe ; Venkataraman, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_222537663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>FULLERENES</topic><topic>HYBRIDIZATION</topic><topic>MOLECULAR ORBITAL METHOD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Géranton, G.</creatorcontrib><creatorcontrib>Seiler, C.</creatorcontrib><creatorcontrib>Evers, F.</creatorcontrib><creatorcontrib>Center for Functional Nanostructures, Karlsruhe Institute of Technology, Campus South, D-76131 Karlsruhe</creatorcontrib><creatorcontrib>Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, Campus South, D-76128 Karlsruhe</creatorcontrib><creatorcontrib>Bagrets, A.</creatorcontrib><creatorcontrib>Steinbuch Center for Supercomputing, Karlsruhe Institute of Technology, D-76128 Karlsruhe</creatorcontrib><creatorcontrib>Venkataraman, L.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Géranton, G.</au><au>Seiler, C.</au><au>Evers, F.</au><au>Center for Functional Nanostructures, Karlsruhe Institute of Technology, Campus South, D-76131 Karlsruhe</au><au>Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, Campus South, D-76128 Karlsruhe</au><au>Bagrets, A.</au><au>Steinbuch Center for Supercomputing, Karlsruhe Institute of Technology, D-76128 Karlsruhe</au><au>Venkataraman, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport properties of individual C{sub 60}-molecules</atitle><jtitle>The Journal of chemical physics</jtitle><date>2013-12-21</date><risdate>2013</risdate><volume>139</volume><issue>23</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Electrical and thermal transport properties of C{sub 60} molecules are investigated with density-functional-theory based calculations. These calculations suggest that the optimum contact geometry for an electrode terminated with a single-Au atom is through binding to one or two C-atoms of C{sub 60} with a tendency to promote the  sp{sup 2}-hybridization into an  sp{sup 3}-type one. Transport in these junctions is primarily through an unoccupied molecular orbital that is partly hybridized with the Au, which results in splitting the degeneracy of the lowest unoccupied molecular orbital triplet. The transmission through these junctions, however, cannot be modeled by a single Lorentzian resonance, as our results show evidence of quantum interference between an occupied and an unoccupied orbital. The interference results in a suppression of conductance around the Fermi energy. Our numerical findings are readily analyzed analytically within a simple two-level model.</abstract><cop>United States</cop><doi>10.1063/1.4840535</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2013-12, Vol.139 (23)
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_22253766
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects ATOMIC AND MOLECULAR PHYSICS
DENSITY FUNCTIONAL METHOD
FULLERENES
HYBRIDIZATION
MOLECULAR ORBITAL METHOD
title Transport properties of individual C{sub 60}-molecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A59%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20properties%20of%20individual%20C%7Bsub%2060%7D-molecules&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=G%C3%A9ranton,%20G.&rft.date=2013-12-21&rft.volume=139&rft.issue=23&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4840535&rft_dat=%3Costi%3E22253766%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true